
Introduction
This document must be read along with the technical documentation such as reference manual(s) and datasheets for the
STM32F0 Series microcontroller devices, available on www.st.com.

It describes how to use the devices in the context of a safety-related system, specifying the user's responsibilities for installation
and operation in order to reach the targeted safety integrity level. It also pertains to the X-CUBE-STL software product.

It provides the essential information pertaining to the applicable functional safety standards, which allows system designers to
avoid going into unnecessary details.

The document is written in compliance with IEC 61508, and it provides information relative to other functional safety standards.

The safety analysis in this manual takes into account the device variation in terms of memory size, available peripherals, and
package.

STM32F0 Series safety manual

 UM1741

User manual

UM1741 - Rev 8 - July 2020
For further information contact your local STMicroelectronics sales office.

www.st.com

http://www.st.com

1 About this document

1.1 Purpose and scope

This document describes how to use Arm®Cortex®‑M0 -based STM32F0 Series microcontroller unit (MCU)
devices (further also referred to as Device(s)) in the context of a safety‑related system, specifying the user's
responsibilities for installation and operation, in order to reach the desired safety integrity level.
It is useful to system designers willing to evaluate the safety of their solution embedding one or more Device(s).
For terms used, refer to the glossary at the end of the document.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

1.2 Normative references

This document is written in compliance with the IEC 61508 international norm for functional safety of electrical,
electronic and programmable electronic safety-related systems, version IEC 61508:1-7 © IEC:2010.
The other functional safety standards considered in this manual are:
• ISO 13849-1:2015, ISO13849-2:2012
• IEC 62061:2005+AMD1:2012+AMD2:2015
• IEC 61800-5-2:2016

The following table maps the document content with respect to the IEC 61508-2 Annex D requirements.

Table 1. Document sections versus IEC 61508-2 Annex D safety requirements

Safety requirement Section number

D2.1 a) a functional specification of the functions capable of being performed 3

D2.1 b) identification of the hardware and/or software configuration of the Compliant item 3.2

D2.1 c) constraints on the use of Compliant item or assumptions on which analysis of the behavior or
failure rates of the item are based 3.2

D2.2 a) the failure modes of Compliant item due to random hardware failures, that result in a failure of
the function and that are not detected by diagnostics internal to Compliant item;

3.7

D2.2 b) for every failure mode in a), an estimated failure rate;

D2.2 c) the failure modes of Compliant item due to random hardware failures, that result in a failure of
the function and that are detected by diagnostics internal to Compliant item;

D2.2 d) the failure modes of the diagnostics, internal to Compliant item due to random hardware failures,
that result in a failure of the diagnostics to detect failures of the function;

D2.2 e) for every failure mode in c) and d), the estimated failure rate;

D2.2 f) for every failure mode in c) that is detected by diagnostics internal to Compliant item, the
diagnostic test interval; 3.2.2

D2.2 g) for every failure mode in c) the outputs of Compliant item initiated by the internal diagnostics; 3.6

D2.2 h) any periodic proof test and/or maintenance requirements;

3.7D2.2 i) for those failure modes, in respect of a specified function, that are capable of being detected by
external diagnostics, sufficient information must be provided to facilitate the development of an external
diagnostics capability.

D2.2 j) the hardware fault tolerance;
3D2.2 k) the classification as type A or type B of that part of Compliant item that provides the function (see

7.4.4.1.2 and 7.4.4.1.3);

 UM1741
About this document

UM1741 - Rev 8 page 2/84

1.3 Reference documents

[1] AN5075: Results of FMEA on STM32F0 Series microcontrollers.

[2] AN5076: FMEDA snapshots for STM32F0 series microcontrollers.

 UM1741
Reference documents

UM1741 - Rev 8 page 3/84

2 Device development process

STM32 series product development process (see Figure 1), compliant with the IATF 16949 standard, is a set of
interrelated activities dedicated to transform customer specification and market or industry domain requirements
into a semiconductor device and all its associated elements (package, module, sub-system, hardware, software,
and documentation), qualified with ST internal procedures and fitting ST internal or subcontracted manufacturing
technologies.

Figure 1. STMicroelectronics product development process

· Key characteristics and
requirements related to future
uses of the device

· Industry domain(s), specific
customer requirements and
definition of controls and tests
needed for compliance

· Product target specification
and strategy

· Project manager
appointment to drive product
development

· Evaluation of the
technologies, design tools
and IPs to be used

· Design objective
specification and product
validation strategy

· Design for quality
techniques (DFD, DFT, DFR,
DFM, …) definition

· Architecture and positioning
to make sure the software
and hardware system
solutions meet the target
specification

· Product approval strategy
and project plan

· Semiconductor design
development

· Hardware development
· Software development
· Analysis of new product

specification to forecast
reliability performance

· Reliability plan, reliability
design rules, prediction of
failure rates for operating life
test using Arrhenius’s law and
other applicable models

· Use of tools and
methodologies such as
APQP, DFM, DFT, DFMEA

· Detection of potential
reliability issues and solution
to overcome them

· Assessment of Engineering
Samples (ES) to identify the
main potential failure
mechanisms

· Statistical analysis of
electrical parameter drifts for
early warning in case of fast
parametric degradation (such
as retention tests)

· Failure analysis on failed
parts to clarify failure modes
and mechanisms and identify
the root causes

· Physical destructive
analysis on good parts after
reliability tests when required

· Electrostatic discharge
(ESD) and latch-up sensitivity
measurement

· Successful completion of
the product qualification
plan

· Secure product deliveries
on advanced technologies
using stress methodologies
to detect potential weak
parts

· Successful completion of
electrical characterization

· Global evaluation of new
product performance to
guarantee reliability of
customer manufacturing
process and final application
of use (mission profile)

· Final disposition for
product test, control and
monitoring

1 Conception 3 Qualification2 Design &
validation

 UM1741
Device development process

UM1741 - Rev 8 page 4/84

3 Reference safety architecture

This section reports details of the STM32F0 Series safety architecture.

3.1 Safety architecture introduction

Device(s) analyzed in this document can be used as Compliant item(s) within different safety applications.
The aim of this section is to identify such Compliant item(s), that is, to define the context of the analysis with
respect to a reference concept definition. The concept definition contains reference safety requirements, including
design aspects external to the defined Compliant item.
As a consequence of Compliant item approach, the goal is to list the system-related information considered
during the analysis, rather than to provide an exhaustive hazard and risk analysis of the system around Device.
Such information includes, among others, application-related assumptions for danger factors, frequency of
failures and diagnostic coverage already guaranteed by the application.

3.2 Compliant item

This section defines the Compliant item term and provides information on its usage in different safety architecture
schemes.

3.2.1 Definition of Compliant item
According to IEC 61508:1 clause 8.2.12, Compliant item is any item (for example an element) on which a claim is
being made with respect to the clauses of IEC 61508 series. Any mature Compliant item must be described in a
safety manual available to End user.
In this document, Compliant item is defined as a system including one or two STM32 devices (see Figure 2). The
communication bus is directly or indirectly connected to sensors and actuators.

Figure 2. STM32 as Compliant item

Remote
controller

Remote
controller

Remote
controller

Remote
controller

Sensor
Actuator

S

S

A

A

Processing element

Compliant item

STM32
device(s)

Other components might be related to Compliant item, like the external HW components needed to guarantee
either the functionality of Device (external memory, clock quartz and so on) or its safety (for example, the external
watchdog or voltage supervisors).
A defined Compliant item can be classified as element according to IEC61508-4, 3.4.5.

3.2.2 Safety functions performed by Compliant item
In essence, Compliant item architecture encompasses the following processes performing the safety function or a
part of it:
• input processing elements (PEi) reading safety related data from the remote controller connected to the

sensor(s) and transferring them to the following computation elements
• computation processing elements (PEc) performing the algorithm required by the safety function and

transferring the results to the following output elements
• output processing elements (PEo) transferring safety related data to the remote controller connected to the

actuator

 UM1741
Reference safety architecture

UM1741 - Rev 8 page 5/84

• in 1oo2 architecture, potentially a further voting processing element (PEv)
• the computation processing elements can be involved (to the extent depending to the target safety integrity)

in the implementation of local software-based diagnostic functions; this is represented by the block PEd
• processes external to Compliant item ensuring safety integrity, such as watchdog (WDTe) and voltage

monitors (VMONe)

The role of the PEv process is clarified in Section 3.2.4 Reference safety architectures - 1oo2. The role of the
WDTe and VMONe external processes is clarified under Section 3.6 Hardware and software diagnostics:
• WDTe: refer to External watchdog – CPU_SM_5 and Control flow monitoring in Application software –

CPU_SM_1,
• VMONe: refer to Supply voltage internal monitoring (PVD) – VSUP_SM_1 and System-level power supply

management - VSUP_SM_5.

In summary, Devices support the implementation of End user safety functions consisting of three operations:
• safe acquisition of safety-related data from input peripheral(s)
• safe execution of Application software program and safe computation of related data
• safe transfer of results or decisions to output peripheral(s)

Claims on Compliant item and computation of safety metrics are done with respect to these three basic
operations.
According to the definition for implemented safety functions, Compliant item (element) can be regarded as type B
(as per IEC61508-2, 7.4.4.1.3 definition). Despite accurate, exhaustive and detailed failure analysis, Device has
to be considered as intrinsically complex. This implies its type B classification.
Two main safety architectures are identified: 1oo1 (using one Device) and 1oo2 (using two Devices).

3.2.3 Reference safety architectures - 1oo1
1oo1 reference architecture (Figure 3) ensures safety integrity of Compliant item through combining Device
internal processes (implemented safety mechanisms) with external processes WDTe and VMONe.
1oo1 reference architecture targets safety integrity level (SIL) SIL2.

Figure 3. 1oo1 reference architecture

PEc Actuators

WDTe

Sensors

VMONe

PEoPEi

PEd

 UM1741
Compliant item

UM1741 - Rev 8 page 6/84

3.2.4 Reference safety architectures - 1oo2
1oo2 reference architecture (Figure 4) contains two separate channels, either implemented as 1oo1 reference
architecture ensuring safety integrity of Compliant item through combining Device internal processes
(implemented safety mechanisms) with external processes WDTe and VMONe. The overall safety integrity is then
ensured by the external voter PEv, which allows claiming hardware fault tolerance (HFT) equal to 1. Achievement
of higher safety integrity levels as per IEC61508-2 Table 3 is therefore possible. Appropriate separation between
the two channels (including power supply separation) should be implemented in order to avoid huge impact of
common-cause failures (refer to Section 4.2 Analysis of dependent failures). However, β and βD parameters
computation is required.
1oo2 reference architecture targets SIL3.

Figure 4. 1oo2 reference architecture

ActuatorsSensors

VMONe

PEc PEoPEi

PEd

WDTeVMONe

PEv

PEc PEoPEi

PEd

WDTe

 UM1741
Compliant item

UM1741 - Rev 8 page 7/84

3.3 Safety analysis assumptions

This section collects all assumptions made during the safety analysis of Devices.

3.3.1 Safety requirement assumptions
The safety concept specification, the overall safety requirement specification and the consequent allocation
determine the requirements for Compliant item as further listed. ASR stands for assumed safety requirement.

Caution: It is End user’s responsibility to check the compliance of the final application with these assumptions.

ASR1: Compliant item can be used to implement four kinds of safety function modes of operation according to
part 4,3.5.16:
• a continuous mode (CM) or high-demand (HD) SIL3 safety function (CM3), or
• a low-demand (LD) SIL3 safety function (LD3), or
• a CM or HD SIL2 safety function (CM2), or
• a LD SIL2 safety function (LD2).

ASR2: Compliant item is used to implement safety function(s) allowing a specific worst-case time budget (see
note below) for the STM32 MCU to detect and react to a failure. That time corresponds to the portion of the
process safety time (PST) allocated to Device (STM32xx Series duty in Figure 5) in error reaction chain at system
level.

Note: The computation for time budget mainly depends on the execution speed for periodic tests implemented by
software. Such duration might depends on the actual amount of hardware resources (RAM memory, Flash
memory, peripherals) actually declared as safety-related. Further constraints and requirements from
IEC61508-2, 7.4.5.3 must be considered.

Figure 5. Allocation and target for STM32 PST

System-level PST

MCU detection FW reaction SW reaction Actuator reaction

STM32xx Series duty End user duty
….

ASR3: Compliant item is used to implement safety function(s) that can be continuously powered on for a period
over eight hours. It is assumed to not require any proof test, and the lifetime of the product is considered to be no
less than 10 years.
ASR4: It is assumed that only one safety function is performed or if many, all functions are classified with the
same SIL and therefore they are not distinguishable in terms of their safety requirements.
ASR5: In case of multiple safety function implementations, it is assumed that End user is responsible to duly
ensure their mutual independence.
ASR6: It is assumed that there are no non-safety-related functions implemented in Application software,
coexisting with safety functions.
ASR7: It is assumed that the implemented safety function(s) does (do) not depend on transition of Device to and
from a low-power state.
ASR8: The local safe state of Compliant item is the one in which either:
• SS1: Application software is informed by the presence of a fault and a reaction by Application software itself

is possible.
• SS2: Application software cannot be informed by the presence of a fault or Application software is not able

to execute a reaction.

Note: End user must take into account that random hardware failures affecting Device can compromise its operation
(for example failure modes affecting the program counter prevent the correct execution of software).

 UM1741
Safety analysis assumptions

UM1741 - Rev 8 page 8/84

The following table provides details on the SS1 and SS2 safe states.

Table 2. SS1 and SS2 safe state details

Safe
state Condition Compliant item

action
System transition to safe
state – 1oo1 architecture

System transition to safe
state – 1oo2 architecture

SS1

Application software is informed
by the presence of a fault and a
reaction by Application software
itself is possible.

Fault reporting to
Application
software

Application software drives
the overall system in its safe
state

Application software in one of
the two channels drives the
overall system in its safe state

SS2

Application software cannot be
informed by the presence of a
fault or Application software is not
able to execute a reaction.

Reset signal
issued by WDTe

WDTe drives the overall
system in its safe state (“safe
shut-down”) (1)

PEv drives the overall system
in its safe state

1. Safe state achievement intended here is compliant to Note on IEC 61508-2, 7.4.8.1

ASR9: It is assumed that the safe state defined at system level by End user is compatible with the assumed local
safe state (SS1, SS2) for Compliant item.
ASR10: Compliant item is assumed to be analyzed according to routes 1H and 1S of IEC 61508-2.

Note: Refer to Section 3.5 Systematic safety integrity and Section 3.6 Hardware and software diagnostics.

ASR11: Compliant item is assumed to be regarded as type B, as per IEC 61508:2, 7.4.4.1.2.

3.4 Electrical specifications and environment limits

To ensure safety integrity, the user must operate Device(s) within its (their) specified:
• absolute maximum rating
• capacity
• operating conditions

For electrical specifications and environmental limits of Device(s), refer to its (their) technical documentation such
as datasheet(s) and reference manual(s) available on www.st.com.

3.5 Systematic safety integrity

According to the requirements of IEC 61508 -2, 7.4.2.2, the Route 1S is considered in the safety analysis of
Device(s). As clearly authorized by IEC61508-2, 7.4.6.1, STM32 MCU products can be considered as standard,
mass-produced electronic integrated devices, for which stringent development procedures, rigorous testing and
extensive experience of use minimize the likelihood of design faults. However, ST internally assesses the
compliance of the Device development flow, through techniques and measures suggested in the IEC 61508-2
Annex F. A safety case database (see Section 5 List of evidences) keeps evidences of the current compliance
level to the norm.

3.6 Hardware and software diagnostics

This section lists all the safety mechanisms (hardware, software and application-level) considered in the Device
safety analysis. It is expected that users are familiar with the architecture of Device, and that this document is
used in conjunction with the related Device datasheet, user manual and reference information. To avoid
inconsistency and redundancy, this document does not report device functional details. In the following
descriptions, the words safety mechanism, method, and requirement are used as synonyms.
As the document provides information relative to the superset of peripherals available on the devices it covers
(not all devices have all peripherals), users are supposed to disregard any recommendations not applicable to
their Device part number of interest.
Information provided for a function or peripheral applies to all instances of such function or peripheral on Device.
Refer to its reference manual or/and datasheet for related information.

 UM1741
Electrical specifications and environment limits

UM1741 - Rev 8 page 9/84

http://www.st.com

The implementation guidelines reported in the following section are for reference only. The safety verification
executed by ST during the Device safety analysis and related diagnostic coverage figures reported in this manual
(or related documents) are based on such guidelines. For clarity, safety mechanisms are grouped by Device
function.
Information is organized in form of tables, one per safety mechanism, with the following fields:

SM CODE Unique safety mechanism code/identifier used also in FMEA document. Identifiers use the scheme
mmm_SM_x where mmm is a 3- or 4-letter module (function, peripheral) short name, and x is a
number. It is possible that the numbering is not sequential (although usually incremental) and/or that
the module short name is different from that used in other documents.

Description Short mnemonic description

Ownership ST: method is available on silicon.

End user: method must be implemented by End user through Application software modification,
hardware solutions, or both.

Detailed
implementation

Detailed implementation sometimes including notes about the safety concept behind the introduction
of the safety mechanism.

Error reporting Describes how the fault detection is reported to Application software.

Fault detection time Time that the safety mechanism needs to detect the hardware failure.

Addressed fault
model

Reports fault model(s) addressed by the diagnostic (permanent, transient, or both), and other
information:
• If ranked for Fault avoidance: method contributes to lower the probability of occurrence of a

failure
• If ranked for Systematic: method is conceived to mitigate systematic errors (bugs) in

Application software design

Dependency on
Device configuration

Reports if safety mechanism implementation or characteristics change among different Device part
numbers.

Initialization Specific operation to be executed to activate the contribution of the safety mechanism

Periodicity Continuous : safety mechanism is active in continuous mode.

Periodic: safety mechanism is executed periodically(1).

On-demand: safety mechanism is activated in correspondence to a specified event (for instance,
reception of a data message).

Startup: safety mechanism is supposed to be executed only at power-up or during off-line
maintenance periods.

Test for the
diagnostic

Reports specific procedure (if any and recommended) to allow on-line tests of safety mechanism
efficiency. If no specific procedure applies (as for the majority of safety mechanisms), the field
indicates Not applicable.

Multiple-fault
protection

Reports the safety mechanism(s) associated in order to correctly manage a multiple-fault scenario
(refer to Section 4.1.3 Notes on multiple-fault scenario).

Recommendations
and known limitations

Additional recommendations or limitations (if any) not reported in other fields.

1. In CM systems, safety mechanism can be accounted for diagnostic coverage contribution only if it is executed at least once
per PST. For LD and HD systems, constraints from IEC61508-2, 7.4.5.3 must be applied.

3.6.1 Arm® Cortex®-M0 CPU

Table 3. CPU_SM_0

SM CODE CPU_SM_0

Description Periodic core self-test software for Arm®Cortex®-M0 CPU.

Ownership End user or ST

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 10/84

SM CODE CPU_SM_0

Detailed implementation

The software test is built around well-known techniques already addressed by IEC 61508:7,
A.3.2 (Self-test by software: walking bit one-channel). To reach the required values of
coverage, the self-test software is specified by means of a detailed analysis of all the CPU
failure modes and related failure modes distribution.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization None

Periodicity Periodic

Test for the diagnostic
Self-diagnostic capabilities can be embedded in the software, according to the test
implementation design strategy chosen. The adoption of checksum protection on results
variables and defensive programming are recommended.

Multiple-fault protection CPU_SM_5: External watchdog

Recommendations and known limitations
This method is the main asset in STM32F0 Series safety concept. Hardware integrity of the
CPU is a key factor, given that the defined diagnostics for MCU peripherals are to major part
software-based.

Table 4. CPU_SM_1

SM CODE CPU_SM_1

Description Control flow monitoring in Application software

Ownership End user

Detailed implementation

A significant part of the failure distribution of CPU core for permanent faults is related to failure
modes directly related to program counter loss of control or hang-up. Due to their intrinsic
nature, such failure modes are not addressed by a standard software test method like
SM_CPU_0. Therefore, it is necessary to implement a run-time control of Application software
flow in order to monitor and detect deviation from the expected behavior due to such faults.
Linking this mechanism to watchdog firing assures that severe loss of control (or, in the worst
case, a program counter hang-up) is detected.

The guidelines for the implementation of the method are the following:
• Different internal states of Application software are well documented and described (the

use of a dynamic state transition graph is encouraged).
• Monitoring of the correctness of each transition between different states of Application

software is implemented.
• Transition through all expected states during the normal Application software program

loop is checked.
• A function in charge of triggering the system watchdog is implemented in order to

constrain the triggering (preventing the issue of CPU reset by watchdog) also to the
correct execution of the above-described method for program flow monitoring. The use
of window feature available on internal window watchdog (WWDG) is recommended.

• The use of the independent watchdog (IWDG), or an external one, helps to implement a
more robust control flow mechanism fed by a different clock source.

In any case, safety metrics do not depend on the kind of watchdog in use (the adoption of
independent or external watchdog contributes to the mitigation of dependent failures, see
Section 4.2.2 Clock).

Error reporting Depends on implementation

Fault detection time Depends on implementation. Higher value is fixed by watchdog timeout interval.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 11/84

SM CODE CPU_SM_1

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations None

Table 5. CPU_SM_2

SM CODE CPU_SM_2

Description Double computation in Application software

Ownership End user

Detailed implementation

A timing redundancy for safety-related computation is considered to detect transient faults
affecting the Arm®Cortex®-M0 CPU subparts devoted to mathematical computations and data
access.

The guidelines for the implementation of the method are the following:
• The requirement needs be applied only to safety-relevant computation, which in case of

wrong result could interfere with the system safety functions. Such computation must be
therefore carefully identified in the original Application software source code

• Both mathematical operation and comparison are intended as computation.
• The redundant computation for mathematical computation is implemented by using

copies of the original data for second computation, and by using an equivalent formula if
possible

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations End user is responsible to carefully avoid that the intervention of optimization features of the
used compiler removes timing redundancies introduced according to this condition of use.

Table 6. CPU_SM_3

SM CODE CPU_SM_3

Description Arm®Cortex®-M0 HardFault exceptions

Ownership ST

Detailed implementation

HardFault exception raise is an intrinsic safety mechanism implemented in Arm®Cortex®-M0
core, mainly dedicated to intercept systematic faults due to software limitations or error in
software design (causing for example execution of undefined operations, unaligned address
access). This safety mechanism is also able to detect hardware random faults inside the CPU
bringing to such described abnormal operations.

Error reporting High-priority interrupt event

Fault detection time Depends on implementation. Refer to functional documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 12/84

SM CODE CPU_SM_3

Initialization None

Periodicity Continuous

Test for the diagnostic
It is possible to write a test procedure to verify the generation of the HardFault exception;
anyway, given the expected minor contribution in terms of hardware random-failure detection,
such implementation is optional.

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations Enabling related interrupt generation on the detection of errors is highly recommended.

Table 7. CPU_SM_4

SM CODE CPU_SM_4

Description Stack hardening for Application software

Ownership End user

Detailed implementation

The stack hardening method is required to address faults (mainly transient) affecting CPU
register bank. This method is based on source code modification, introducing information
redundancy in register-passed information to called functions.

The guidelines for the implementation of the method are the following:
• To pass also a redundant copy of the passed parameters values (possibly inverted) and

to execute a coherence check in the function.
• To pass also a redundant copy of the passed pointers and to execute a coherence

check in the function.
• For parameters that are not protected by redundancy, to implement defensive

programming techniques (plausibility check of passed values). For example enumerated
fields are to be checked for consistency.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations
This method partially overlaps with defensive programming techniques required by IEC61508
for software development. Therefore in presence of Application software qualified for safety
integrity greater or equal to SC2, optimizations are possible.

Table 8. CPU_SM_5

SM CODE CPU_SM_5

Description External watchdog

Ownership End user

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 13/84

SM CODE CPU_SM_5

Detailed implementation

Using an external watchdog linked to control flow monitoring method (refer to CPU_SM_1)
addresses failure mode of program counter or control structures of CPU.

External watchdog can be designed to be able to generate the combination of signals needed
on the final system to achieve the safe state. It is recommended to carefully check the
assumed requirements about system safe state reported in Section 3.3.1 Safety requirement
assumptions.

It also contributes to dramatically reduce potential common cause failures, because the
external watchdog is clocked and supplied independently of Device.

Error reporting Depends on implementation

Fault detection time Depends on implementation (watchdog timeout interval)

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic To be defined at system level (outside the scope of Compliant item analysis).

Multiple-fault protection CPU_SM_1: Control flow monitoring in Application software

Recommendations and known limitations

In case of usage of windowed watchdog, End user must consider possible tolerance in
Application software execution to avoid false error reports (affecting system availability).

It is worth noting that the use of an external watchdog could be needed anyway when Device
is used to trigger final elements, in order to comply at system level with requirements from
IEC61508-2:2010 Table A.1/Table A.14.

Table 9. CPU_SM_6

SM CODE CPU_SM_6

Description Independent watchdog

Ownership ST

Detailed implementation Using the IDWG watchdog linked to control flow monitoring method (refer to CPU_SM_1)
addresses failure mode of program counter or control structures of CPU.

Error reporting Reset signal generation

Fault detection time Depends on implementation (watchdog timeout interval)

Addressed fault model Permanent

Dependency on Device configuration None

Initialization IWDG activation. It is recommended to use hardware watchdog in option byte settings (IWDG
is automatically enabled after reset).

Periodicity Continuous

Test for the diagnostic WDG_SM_1: Software test for watchdog at startup

Multiple-fault protection
CPU_SM_1: Control flow monitoring in Application software

WDG_SM_0: Periodic read-back of configuration registers

Recommendations and known limitations

The IWDG intervention is able to achieve a potentially “incomplete” local safe state because it
can only guarantee that CPU is reset. No guarantee that Application software can be still
executed to generate combinations of output signals that might be needed by the external
system to achieve the final safe state. If this limitation turn out in a blocking point, End user
must adopt CPU_SM_5.

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 14/84

3.6.2 System bus architecture

Table 10. BUS_SM_0

SM CODE BUS_SM_0

Description Periodic software test for interconnections

Ownership End user

Detailed implementation

The intra-chip connection resources (Bus Matrix, AHB or APB bridges) needs to be
periodically tested for permanent faults detection. Note that STM32F0 Series devices have no
hardware safety mechanism to protect these structures. The test executes a connectivity test
of these shared resources, including the testing of the arbitration mechanisms between
peripherals.

According to IEC 61508:2 Table A.8, A.7.4 the method is considered able to achieve high
levels of coverage.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations Implementation can be considered in large part as overlapping with the widely used Periodic
read-back of configuration registers required for several peripherals.

Table 11. BUS_SM_1

SM CODE BUS_SM_1

Description Information redundancy in intra-chip data exchanges

Ownership End user

Detailed implementation

This method requires to add some kind of redundancy (for example a CRC checksum at
packet level) to each data message exchanged inside Device.

Message integrity is verified using the checksum by Application software, before consuming
data.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations
Implementation can be in large part overlapping with other safety mechanisms requiring
information redundancy on data messages for communication peripherals. Optimizations are
therefore possible.

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 15/84

3.6.3 Embedded SRAM

Table 12. RAM_SM_0

SM CODE RAM_SM_0

Description Periodic software test for static random access memory (SRAM)

Ownership End user or ST

Detailed implementation

To enhance the coverage on SRAM data cells and to ensure adequate coverage for
permanent faults affecting the address decoder it is required to execute a periodic software
test on the system RAM memory. The selection of the algorithm must ensure the target SFF
coverage for both the RAM cells and the address decoder. Evidences of the effectiveness of
the coverage of the selected method must be also collected

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration RAM size can change according to the part number.

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Self-diagnostic capabilities can be embedded in the software, according to the test
implementation design strategy chosen.

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

Usage of a March test C- is recommended.

Because the nature of this test can be destructive, RAM contents restore must be
implemented. Possible interferences with interrupt-serving routines fired during test execution
must be also considered (such routines can access to RAM invalid contents).

Startup execution of this safety mechanism is recommended for multiple fault mitigations -
refer to Section 4.1.3 Notes on multiple-fault scenario.

Unused RAM section can be excluded by the testing, under End user responsibility on actual
RAM usage by final Application software.

Table 13. RAM_SM_1

SM CODE RAM_SM_1

Description Parity on SRAM2

Ownership ST

Detailed implementation Internal SRAM2 is protected by additional parity bits (1 bit per byte). The parity bits are
computed and stored when writing into the SRAM2.

Error reporting
Error flag SYSCFG_CFGR2 set

NMI raised

Fault detection time Parity bits are checked during a reading.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization End user must enable the parity check using the option bit SYSCFG_CFGR2, after the boot.

Periodicity Continuous

Test for the diagnostic

Direct test procedure for SRAM parity function is not available. SRAM parity-related run-time
hardware failures leading to disabling such protection fall into multiple-fault scenario, from
IEC61508 perspective. Related failures are adequately mitigated by the combination of safety
mechanisms reported in this table, field Multiple-fault protection.

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 16/84

SM CODE RAM_SM_1

Multiple-fault protection
DIAG_SM_0: Periodic read-back of hardware diagnostics configuration registers

RAM_SM_0: Periodic software test for static random access memory (SRAM)

Recommendations and known limitations

It is advised to initialize by software the whole SRAM2 memory at Application software
startup, to avoid getting parity errors when reading non-initialized locations.

As parity protection is restricted to SRAM2, End user is encouraged to store all safety-related
data in SRAM2 (if possible), in order to get benefit of such additional hardware-based fast
diagnostic.

Table 14. RAM_SM_2

SM CODE RAM_SM_2

Description Stack hardening for Application software

Ownership End user

Detailed implementation

The stack hardening method is used to enhance Application software robustness to SRAM
faults that affect the address decoder. The method is based on source code modification,
introducing information redundancy in the stack-passed information to the called functions.
Method contribution is relevant in case the combination between the final Application software
structure and the compiler settings requires a significant use of the stack for passing function
parameters.

Implementation is the same as method CPU_SM_4.

Error reporting Refer to CPU_SM_4

Fault detection time Refer to CPU_SM_4

Addressed fault model Refer to CPU_SM_4

Dependency on Device configuration Refer to CPU_SM_4

Initialization Refer to CPU_SM_4

Periodicity Refer to CPU_SM_4

Test for the diagnostic Refer to CPU_SM_4

Multiple-fault protection Refer to CPU_SM_4

Recommendations and known limitations Refer to CPU_SM_4

Table 15. RAM_SM_3

SM CODE RAM_SM_3

Description Information redundancy for safety-related variables in Application software

Ownership End user

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 17/84

SM CODE RAM_SM_3

Detailed implementation

To address transient faults affecting SRAM controller, it is required to implement information
redundancy on the safety-related system variables stored in the RAM.

The guidelines for the implementation of this method are the following:
• The system variables that are safety-related (in the sense that a wrong value due to a

failure in reading on the RAM affects the safety functions) are well-identified and
documented.

• The arithmetic computation or decision based on such variables are executed twice and
the two final results are compared.

• Safety-related variables are stored and updated in two redundant locations, and
comparison is checked before consuming data.

• Enumerated fields must use non-trivial values, checked for coherence with the same
frequency as for periodically executed diagnostics (see (1) in Section 3.6 Hardware and
software diagnostics).

• Data vectors stored in SRAM must be protected by a encoding checksum (such as
CRC).

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations
Implementation of this safety method shows a partial overlap with an already foreseen method
for Arm®Cortex®-M0 (CPU_SM_1); optimizations in implementing both methods are therefore
possible.

Table 16. RAM_SM_4

SM CODE RAM_SM_4

Description Control flow monitoring in Application software

Ownership End user

Detailed implementation

In case End user Application software is executed from SRAM, permanent and transient faults
affecting the memory (cells and address decoder) can interfere with the program execution.

The implementation of this method is required to address such failures.

For more details on the implementation, refer to CPU_SM_1 description.

Error reporting Depends on implementation

Fault detection time Depends on implementation. Higher value is fixed by watchdog timeout interval.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations
Needed only in case of Application software execution from SRAM.

CPU_SM_1 correct implementation supersedes this requirement.

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 18/84

Table 17. RAM_SM_5

SM CODE RAM_SM_5

Description Periodic integrity test for Application software in RAM

Ownership End user

Detailed implementation

In case Application software or diagnostic libraries are executed in RAM, it is needed to
protect the integrity of the code itself against soft-error corruptions and related code
mutations. This method must check the integrity of the stored code by checksum computation
techniques, on a periodic basis. For implementation details, refer to similar method
FLASH_SM_0.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Self-diagnostic capabilities can be embedded in the software, according to the test
implementation design strategy chosen.

Multiple-fault protection
CPU_SM_0: Periodic core self-test software

CPU_SM_1: Control flow monitoring in Application software

Recommendations and known limitations This method must only be implemented if Application software or diagnostic libraries are
executed from RAM.

3.6.4 Embedded Flash memory

Table 18. FLASH_SM_0

SM CODE FLASH_SM_0

Description Periodic software test for Flash memory

Ownership End user or ST

Detailed implementation

Permanent faults affecting the system Flash memory interface address decoder are
addressed through a dedicated software test that checks the memory cells contents versus
the expected value, using signature-based techniques. According to IEC 61508:2 Table A.5,
the effective diagnostic coverage of such techniques depends on the width of the signature in
relation to the block length of the information to be protected - therefore the signature
computation method is to be carefully selected. Note that the simple signature method (IEC
61508:7 - A.4.2 Modified checksum) is inadequate as it only achieves a low value of
coverage.

The information block does not need to be addressed with this test as it is not used during
normal operation (no data nor program fetch).

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration Flash memory size changes according to the part number.

Initialization Memory signatures must be stored in Flash memory as well.

Periodicity Periodic

Test for the diagnostic Self-diagnostic capabilities can be embedded in the software, according to the test
implementation design strategy chosen.

Multiple-fault protection
CPU_SM_0: Periodic core self-test software

CPU_SM_1: Control flow monitoring in Application software

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 19/84

SM CODE FLASH_SM_0

Recommendations and known limitations

This test is expected to have a relevant time duration – test integration must therefore
consider the impact on Application software execution.

The use of internal cyclic redundancy check (CRC) module is recommended. In principle
direct memory access (DMA) feature for data transfer can be used.

Unused Flash memory sections can be excluded from testing.

Table 19. FLASH_SM_1

SM CODE FLASH_SM_1

Description Control flow monitoring in Application software

Ownership End user

Detailed implementation

Permanent and transient faults affecting the system Flash memory, memory cells and address
decoder, can interfere with the access operation by the CPU, leading to wrong data or
instruction fetches.

Such failures can be detected by control flow monitoring techniques implemented in
Application software loaded from Flash memory.

For more details on the implementation, refer to description CPU_SM_1.

Error reporting Depends on implementation

Fault detection time Depends on implementation. Higher value is fixed by watchdog timeout interval.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations CPU_SM_1 correct implementation supersedes this requirement.

Table 20. FLASH_SM_2

SM CODE FLASH_SM_2

Description Arm®Cortex®-M0 HardFault exceptions

Ownership ST

Detailed implementation

Hardware random faults (both permanent and transient) affecting system Flash memory
(memory cells, address decoder) can lead to wrong instruction codes fetches, and eventually
to the intervention of the Arm®Cortex®-M0 HardFault exceptions. Refer to CPU_SM_3 for
detailed description.

Error reporting Refer to CPU_SM_3

Fault detection time Refer to CPU_SM_3

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Refer to CPU_SM_3

Periodicity Continuous

Test for the diagnostic Refer to CPU_SM_3

Multiple-fault protection Refer to CPU_SM_3

Recommendations and known limitations Refer to CPU_SM_3

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 20/84

Table 21. FLASH_SM_3

SM CODE FLASH_SM_3

Description Option byte write protection

Ownership ST

Detailed implementation This safety mechanism prevents unintended writes of the option byte. The use of this method
is encouraged to enhance the end application robustness with respect to systematic faults.

Error reporting Write protection exception

Fault detection time Not applicable

Addressed fault model None (systematic only)

Dependency on Device configuration None

Initialization Not required (enabled by default)

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations This method addresses systematic faults in software applications. It is inefficient for hardware
random faults affecting the option byte value in run time. No DC value is therefore associated.

Table 22. FLASH_SM_4

SM CODE FLASH_SM_4

Description Static data encapsulation

Ownership End user

Detailed implementation
If static data are stored in Flash memory, encapsulation by a checksum field with encoding
capability (such as CRC) must be implemented.

Checksum validity is checked by Application software before static data consuming.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations None

Table 23. FLASH_SM_5

SM CODE FLASH_SM_5

Description Option byte redundancy with load verification

Ownership ST

Detailed implementation
During option byte loading after each power-on reset, the bit-wise complementarity of the
option byte and its corresponding complemented option byte is verified. Mismatches are
reported as an error.

Error reporting Option byte error (OPTVERR) generation

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 21/84

SM CODE FLASH_SM_5

Fault detection time Not applicable

Addressed fault model Permanent

Dependency on Device configuration None

Initialization None (always enabled)

Periodicity Startup

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations None

Table 24. FLASH_SM_6

SM CODE FLASH_SM_6

Description Flash memory unused area filling code

Ownership End user

Detailed implementation
Used Flash memory area must be filled with deterministic data. This way in case that the
program counter jumps outside the application program area due to a transient fault affecting
CPU, the system evolves in a deterministic way.

Error reporting Not applicable

Fault detection time Not applicable

Addressed fault model None (fault avoidance)

Dependency on Device configuration None

Initialization Not applicable

Periodicity Not applicable

Test for the diagnostic Not applicable

Multiple-fault protection Not applicable

Recommendations and known limitations Filling code can be made of NOP instructions, or an illegal code that leads to a HardFault
exception raise.

3.6.5 Power controller (PWR)

Table 25. VSUP_SM_0

SM CODE VSUP_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.11 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 22/84

SM CODE VSUP_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 26. VSUP_SM_1

SM CODE VSUP_SM_1

Description Supply voltage internal monitoring (PVD)

Ownership ST

Detailed implementation
The device features an embedded programmable voltage detector (PVD) that monitors the
VDD power supply and compares it to the VPVD threshold. An interrupt can be generated when
VDD drops below the VPVD threshold or when VDD is higher than the VPVD threshold.

Error reporting Interrupt event generation

Fault detection time Depends on threshold programming. Refer to functional documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Protection enable by the PVDE bit and the threshold setting in the Power control register
(PWR_CR)

Periodicity Continuous

Test for the diagnostic

Direct test procedure for PVD efficiency is not available. PVD run-time hardware failures
leading to disabling such protection fall into multiple-fault scenario, from IEC61508
perspective. Related failures are adequately mitigated by the combination of safety
mechanisms reported in this table, field Multiple-fault protection.

Multiple-fault protection DIAG_SM_0: Periodic read-back of hardware diagnostics configuration registers

Recommendations and known limitations

Internal monitoring PVD has limited capability to address failures affecting STM32F0 Series
internal voltage regulator. Refer to [1] for details.

Internal monitoring PVD has limited capability to address failures affecting the internal voltage
regulator. Refer to Device FMEA for details.

Table 27. VSUP_SM_2

SM CODE VSUP_SM_2

Description Independent watchdog

Ownership ST

Detailed implementation

Failures in the power supplies for digital logic (core or peripherals) may lead to alteration of
Application software timing, which can be detected by IWDG as safety mechanism introduced
to monitor Application software control flow. Refer to CPU_SM_1 and CPU_SM_6 for further
information.

Error reporting Reset signal generation

Fault detection time Depends on implementation (watchdog timeout interval)

Addressed fault model Permanent

Dependency on Device configuration None

Initialization IWDG activation. It is recommended to use Hardware watchdog in Option byte settings (IWDG
is automatically enabled after reset).

Periodicity Continuous

Test for the diagnostic Refer to CPU_SM_6.

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 23/84

SM CODE VSUP_SM_2

Multiple-fault protection CPU_SM_1: Control flow monitoring in Application software

Recommendations and known limitations

In specific part numbers, IWDG can be fed by a power supply independent from the one used
for CPU core and main peripherals. Such diversity helps to increase the protection guaranteed
by IWDG from main power supply anomalies.

The adoption of an external watchdog (refer to CPU_SM_5) adds further diversity.

Table 28. VSUP_SM_3

SM CODE VSUP_SM_3

Description Internal temperature sensor check

Ownership End user

Detailed implementation
The internal temperature sensor must be periodically tested in order to detect abnormal
increase of the die temperature – hardware faults in supply voltage system may cause
excessive power consumption and consequent temperature rise.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization None

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations
This method also mitigates the probability of common-cause failure due to excessive
temperature, affecting Device.

Refer to the Device datasheet to set the threshold temperature.

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 24/84

Table 29. VSUP_SM_5

SM CODE VSUP_SM_5

Description System-level power supply management

Ownership End user

Detailed implementation

This method is implemented at system level in order to guarantee the stability of power supply
value over time. It can include a combination of different overlapped solutions, some listed
here below (but not limited to):
• additional voltage monitoring by external components
• passive electronics devices able to mitigate overvoltage
• specific design of power regulator in order to avoid power supply disturbance in

presence of a single failure

Error reporting Depends on implementation

Fault detection time Fault avoidance

Addressed fault model None

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection Not applicable

Recommendations and known limitations Usually, this method is already required/implemented to guarantee the stability of each
component of the final electronic board.

3.6.6 Reset and clock controller (RCC)

Table 30. CLK_SM_0

SM CODE CLK_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation

This method must be applied to configuration registers for clock and reset system (refer to
RCC register map).

Detailed information on the implementation of this method can be found in
Section 3.6.11 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 25/84

Table 31. CLK_SM_1

SM CODE CLK_SM_1

Description Clock security system (CSS)

Ownership ST

Detailed implementation

The clock security system (CSS) detects the loss of high-speed external (HSE) oscillator clock
activity and executes the corresponding recovery action, such as:
• switch-off HSE
• commutation on the HIS
• generation of related NMI

Error reporting NMI

Fault detection time Depends on implementation (clock frequency value)

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization CSS protection must be enabled through Clock interrupt register (RCC_CIR) after boot.

Periodicity Continuous

Test for the diagnostic CLK_SM_0: Periodic read-back of configuration registers

Multiple-fault protection CPU_SM_5: External watchdog

Recommendations and known limitations It is recommended to carefully read reference manual instruction on NMI generation, in order
to correctly managing the faulty situation by Application software.

Table 32. CLK_SM_2

SM CODE CLK_SM_2

Description Independent watchdog

Ownership ST

Detailed implementation The independent watchdog IWDG is able to detect failures in internal main MCU clock (lower
frequency).

Error reporting Reset signal generation

Fault detection time Depends on implementation (watchdog timeout interval)

Addressed fault model Permanent

Dependency on Device configuration None

Initialization IWDG activation. It is recommended to use the hardware watchdog in Option byte settings
(IWDG is automatically enabled after reset).

Periodicity Continuous

Test for the diagnostic Refer to CPU_SM_6.

Multiple-fault protection CPU_SM_1: Control flow monitoring in Application software

Recommendations and known limitations The adoption of an external watchdog (refer to CPU_SM_5) adds further diversity.

Table 33. CLK_SM_3

SM CODE CLK_SM_3

Description Internal clock cross-measurement

Ownership End user

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 26/84

SM CODE CLK_SM_3

Detailed implementation

This method is implemented using TIM14 capabilities to be fed by the 32 KHz RTC clock or an
external clock source (if available). TIM14 counter progresses are compared with another
counter (fed by internal clock). Abnormal values of oscillator frequency can therefore be
detected.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection
CPU_SM_1: Control flow monitoring in Application software

CPU_SM_5: External watchdog

Recommendations and known limitations Efficiency versus transient faults is negligible. It provides only medium efficiency in permanent
clock-related failure mode coverage.

3.6.7 General-purpose input/output (GPIO)

Table 34. GPIO_SM_0

SM CODE GPIO_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to GPIO configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.11 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration GPIO availability can differ according to part number

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 35. GPIO_SM_1

SM CODE GPIO_SM_1

Description 1oo2 for input GPIO lines

Ownership End user

Detailed implementation

This method addresses GPIO lines used as inputs. Implementation is done by connecting the
external safety-related signal to two independent GPIO lines. Comparison between the two
GPIO values is executed by Application software each time the signal is used to affect
Application software behavior.

Error reporting Depends on implementation

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 27/84

SM CODE GPIO_SM_1

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Permanent/transient

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

To reduce the potential impact of common cause failure, it is recommended to use GPIO lines:
• belonging to different I/O ports (for instance port A and B)
• with different bit port number (for instance PA1 and PB5)
• mapped to non-adjacent pins on the device package

Table 36. GPIO_SM_2

SM CODE GPIO_SM_2

Description Loopback scheme for output GPIO lines

Ownership End user

Detailed implementation

This method addresses GPIO lines used as outputs. Implementation is done by a loopback
scheme, connecting the output to a different GPIO line programmed as input and by using the
input line to check the expected value on output port. Comparison is executed by Application
software periodically and each time output is updated.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

To reduce the potential impact of common cause failure, it is recommended to use GPIO lines:
• belonging to different I/O ports (for instance port A and B)
• with different bit port number (for instance PA1 and PB5)
• mapped to non-adjacent pins on the device package

Efficiency versus transient failures is linked to final application characteristics. We define as
Tm the minimum duration of GPIO output wrong signal permanence required to violate the
related safety function(s). Efficiency is maximized when execution test frequency is higher
than 1/Tm.

Table 37. GPIO_SM_3

SM CODE GPIO_SM_3

Description GPIO port configuration lock register

Ownership ST

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 28/84

SM CODE GPIO_SM_3

Detailed implementation

This safety mechanism prevents configuration changes for GPIO registers; it addresses
therefore systematic faults in software application.

The use of this method is encouraged to enhance the end-application robustness for
systematic faults.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model None (Systematic only)

Dependency on Device configuration None

Initialization Application software must apply a correct write sequence to LCKK bit (bit 16 of the
GPIOx_LCKR register) after writing the final GPIO configuration.

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection Not required

Recommendations and known limitations This method does not address transient faults (soft errors) that can possibly cause bit-flips on
GPIO registers at running time.

3.6.8 Debug system or peripheral control

Table 38. DBG_SM_0

SM CODE DBG_SM_0

Description Watchdog protection

Ownership ST

Detailed implementation
The debug unintentional activation due to hardware random fault results in the massive
disturbance of CPU operations, leading to an intervention of the independent watchdog or,
alternatively, the other system watchdog WWDG or the external one (CPU_SM_5).

Error reporting Reset signal generation

Fault detection time Depends on implementation (watchdog timeout interval).

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Refer to CPU_SM_6.

Multiple-fault protection CPU_SM_1: Control flow monitoring in Application software

Recommendations and known limitations None

Table 39. LOCK_SM_0

SM CODE LOCK_SM_0

Description Lock mechanism for configuration options

Ownership ST

Detailed implementation

The STM32F0 Series devices feature spread protection to prevent unintended configuration
changes for some peripherals and system registers (for example PVD_LOCK, timers); the
spread protection detects systematic faults in software application. The use of this method is
encouraged to enhance the end application robustness to systematic faults.

Error reporting Not generated (when locked, register overwrites are simply ignored).

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 29/84

SM CODE LOCK_SM_0

Fault detection time Not applicable

Addressed fault model None (systematic only)

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection Not required

Recommendations and known limitations No DC associated because this test addresses systematic faults.

3.6.9 System configuration controller (SYSCFG)

Table 40. SYSCFG_SM_0

SM CODE SYSCFG_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation

This method must be applied to system configuration controller configuration registers.

This method is strongly recommended to protect registers related to hardware diagnostics
activation and error reporting chain related features.
Detailed information on the implementation of this method can be found in
Section 3.6.11 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations This method is mainly overlapped by several other configuration register read-backs required
for other MCU peripherals. It is reported here for the sake of completeness.

Table 41. DIAG_SM_0

SM CODE DIAG_SM_0

Description Periodic read-back of hardware diagnostics configuration registers

Ownership End user

Detailed implementation

In STM32F0 Series, several hardware-based safety mechanisms are available (those with the
Ownership field set to ST). This method must be applied to any configuration register related
to diagnostic measure operations, including error reporting. End user must therefore
individuate configuration registers related to:
• hardware diagnostic enable
• interrupt/NMI enable (if used for diagnostic error management)

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 30/84

SM CODE DIAG_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

3.6.10 Direct memory access controller (DMA)

Table 42. DMA_SM_0

SM CODE DMA_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to DMA configuration register and channel address register.

Detailed information on the implementation of this method can be found in
Section 3.6.11 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 43. DMA_SM_1

SM CODE DMA_SM_1

Description Information redundancy on data packet transferred via DMA

Ownership End user

Detailed implementation

This method is implemented by adding, to data packets transferred by DMA, a redundancy
check (such as CRC check or similar one) with encoding capability. Full data packet
redundancy would be an overkill.

The checksum encoding capability must be robust enough to guarantee at least 90%
probability of detection for a single bit flip in the data packet.

Consistency of data packet must be checked by Application software before consuming data.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 31/84

SM CODE DMA_SM_1

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations To give an example about checksum encoding capability, using just a bit-by-bit addition is
inappropriate.

Table 44. DMA_SM_2

SM CODE DMA_SM_2

Description Information redundancy by including sender or receiver identifier on data packet transferred
via DMA

Ownership End user

Detailed implementation

This method helps to identify inside the MCU the source and the originator of the message
exchanged by DMA.

Implementation is realized by adding an additional field to protected message, with a coding
convention for message type identification fixed at Device level. Guidelines for the
identification fields are:
• Identification field value must be different for each possible couple of sender or receiver

on DMA transactions.
• Values chosen must be enumerated and non-trivial.
• Coherence between the identification field value and the message type is checked by

Application software before consuming data.

This method, when implemented in combination with DMA_SM_4, makes available a kind of
virtual channel between source and destinations entities.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations None

Table 45. DMA_SM_3

SM CODE DMA_SM_3

Description Periodic software test for DMA

Ownership End user

Detailed implementation

This method requires the periodical testing of the DMA basic functionality, implemented
through a deterministic transfer of a data packet from one source to another (for example from
memory to memory) and the checking of the correct transfer of the message on the target.
Data packets are composed by non-trivial patterns (avoid the use of 0x0000, 0xFFFF values)
and organized in order to allow the detection during the check of the following failures:
• incomplete packed transfer
• errors in single transferred word
• wrong order in packed transmitted data

Error reporting Depends on implementation

Fault detection time Depends on implementation

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 32/84

SM CODE DMA_SM_3

Addressed fault model Permanent

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations None

Table 46. DMA_SM_4

SM CODE DMA_SM_4

Description DMA transaction awareness

Ownership End user

Detailed implementation

DMA transactions are non-deterministic by nature, because typically driven by external events
like communication messages reception. Anyway, well-designed safety systems should keep
much control as possible of events – refer for instance to IEC61508:3 Table 2 item 13
requirements for software architecture.

This method is based on system knowledge of frequency and type of expected DMA
transaction. For instance, an externally connected sensor supposed to send periodically some
messages to a STM32 peripheral. Monitoring DMA transaction by a dedicated state machine
allows to detect missing or unexpected DMA activities.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations
Because DMA transaction termination is often linked to an interrupt generation,
implementation of this method can be merged with the safety mechanism NVIC_SM_1:
Expected and unexpected interrupt check.

3.6.11 Extended interrupt and events controller (EXTI)

Table 47. NVIC_SM_0

SM CODE NVIC_SM_0

Description Periodic read-back of configuration registers

Ownership End user

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 33/84

SM CODE NVIC_SM_0

Detailed implementation

This test is implemented by executing a periodic check of the configuration registers for a
system peripheral against its expected value. Expected values are previously stored in RAM
and adequately updated after each configuration change. The method mainly addresses
transient faults affecting the configuration registers, by detecting bit flips in the registers
contents. It addresses also permanent faults on registers because it is executed at least once
per PST (or another timing constraint; refer to (1) in Section 3.6 Hardware and software
diagnostics) after an update of the peripheral.

Method must be implemented to any configuration register whose contents are able to
interfere with NVIC or EXTI behavior in case of incorrect settings. Check includes NVIC vector
table.

According to the state-of-the-art automotive safety standard ISO26262, this method can
achieve high levels of diagnostic coverage (DC) (refer to ISO26262-5:2018, Table D.4).

An alternative valid implementation requiring less space in SRAM can be realized on the basis
of signature concept:
• Peripheral registers to be checked are read in a row, computing a CRC checksum (use

of hardware CRC is encouraged).
• Obtained signature is compared with the golden value (computed in the same way after

each register update, and stored in SRAM).
• Coherence between signatures is checked by Application software – signature

mismatch is considered as failure detection.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Values of configuration registers must be read after the boot before executing the first check.

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

This method addresses only failures affecting configuration registers, and not peripheral core
logic or external interface.

Attention must be paid to registers containing mixed combination of configuration and status
bits. Mask must be used before saving register contents affecting signature, and related
checks done, to avoid false positive detections.

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 34/84

Table 48. NVIC_SM_1

SM CODE NVIC_SM_1

Description Expected and unexpected interrupt check

Ownership End user

Detailed implementation

According to IEC 61508:2 Table A.1 recommendations, a diagnostic measure for continuous,
absence or cross-over of interrupt must be implemented. The method of expected and
unexpected interrupt check is implemented at Application software level.

The guidelines for the implementation of the method are the following:
• The interrupts implemented on the MCU are well documented, also reporting, when

possible, the expected frequency of each request (for example, the interrupts related to
ADC conversion completion that come on a regular basis).

• Individual counters are maintained for each interrupt request served, in order to detect in
a given time frame the cases of a) no interrupt at all b) too many interrupt requests
(“babbling idiot” interrupt source). The control of the time frame duration must be
regulated according to the individual interrupt expected frequency.

• Interrupt vectors related to unused interrupt source point to a default handler that
reports, in case of triggering, a faulty condition (unexpected interrupt).

• In case an interrupt service routine is shared between different sources, a plausibility
check on the caller identity is implemented.

• Interrupt requests related to non-safety-related peripherals are handled with the same
method here described, despite their originator safety classification.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations In order to decrease the complexity of method implementation, it is suggested to use polling
technique (when possible) instead of interrupt for end system implementation.

3.6.12 Cyclic redundancy-check calculation unit (CRC)

Table 49. CRC_SM_0

SM CODE CRC_SM_0

Description CRC self-coverage

Ownership ST

Detailed implementation

The CRC algorithm implemented in this module (CRC-32 Ethernet polynomial: 0x4C11DB7)
offers excellent features in terms of error detection in the message. Therefore permanent and
transient faults affecting CRC computations are easily detected by any operations using the
module to recompute an expected signature.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 35/84

SM CODE CRC_SM_0

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations None

3.6.13 Analog-to-digital converter (ADC)

Table 50. ADC_SM_0

SM CODE ADC_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to ADC configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.11 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 51. ADC_SM_1

SM CODE ADC_SM_1

Description Multiple acquisition by Application software

Ownership End user

Detailed implementation
This method implements a timing information redundancy by executing multiple acquisitions
on the same input signal. Multiple acquisition data are then combined by a filter algorithm to
determine the signal correct value.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Depends on implementation

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations
It is highly probable that this recommendation is satisfied by design by End userApplication
software. Usage of multiple acquisitions followed by average operations is a common
technique in industrial applications exposed to electromagnetic interference on sensor lines.

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 36/84

Table 52. ADC_SM_2

SM CODE ADC_SM_2

Description Range check by Application software

Ownership End user

Detailed implementation

The guidelines for the implementation of the method are the following:
• The expected range of the data to be acquired are investigated and adequately

documented. Note that in a well-designed application it is improbable that during normal
operation an input signal has a very near or over the upper and lower rail limit
(saturation in signal acquisition).

• If Application software is aware of the state of the system, this information is to be used
in the range check implementation. For example, if the ADC value is the measurement
of a current through a power load, reading an abnormal value such as a current flowing
in opposite direction versus the load supply may indicate a fault in the acquisition
module.

• As the ADC module is shared between different possible external sources, the
combination of plausibility checks on the different signals acquired can help to cover the
whole input range in a very efficient way.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Depends on implementation

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations The implementation and the related diagnostic efficiency of this safety mechanism are strongly
application-dependent.

Table 53. ADC_SM_3

SM CODE ADC_SM_3

Description Periodic software test for ADC

Ownership End user

Detailed implementation

The method is implemented acquiring multiple signals and comparing the read value with the
expected one, supposed to be know. Method can be implemented with different level of
complexity:
• Basic complexity: acquisition and check of upper or lower rails (VDD or VSS) and

internal reference voltage
• High complexity: in addition to basic complexity tests, acquisition of a DAC output

connected to ADC input and checking all voltage excursion and linearity

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 37/84

SM CODE ADC_SM_3

Recommendations and known limitations Combination of two methods with different complexity can be used to better optimize test
frequency in high-demand safety functions.

3.6.14 Digital-to-analog converter (DAC)

Table 54. DAC_SM_0

SM CODE DAC_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to DAC configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.11 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 55. DAC_SM_1

SM CODE DAC_SM_1

Description DAC output loopback on ADC channel

Ownership End user

Detailed implementation Route the active DAC output to one ADC channel, and check the output current value against
the expected one.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous or on demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations
Efficiency versus transient failures is linked to final application characteristics. We define as
Tm the minimum duration of DAC wrong signal permanence required to violate the related
safety function(s). Efficiency is maximized when execution test frequency is higher than 1/Tm.

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 38/84

3.6.15 Comparator (COMP)

Table 56. COMP_SM_0

SM CODE COMP_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to COMP configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.11 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 57. COMP_SM_1

SM CODE COMP_SM_1

Description 1oo2 scheme for comparator

Ownership End user

Detailed implementation This safety mechanism is implemented using the two internal comparators to take the same
decision. It requires that the comparator voting is handled accordingly.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations This method is not compatible with window comparator feature.

Table 58. COMP_SM_2

SM CODE COMP_SM_2

Description Plausibility check on inputs

Ownership End user

Detailed implementation
This method is used to redundantly acquire on dedicated ADC channels the analog inputs that
are subjected to comparator function, and to periodically check the coherence of the
comparator output on the measured values.

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 39/84

SM CODE COMP_SM_2

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations None

Table 59. COMP_SM_3

SM CODE COMP_SM_3

Description Multiple acquisition by Application software

Ownership End user

Detailed implementation
This method requires that Application software takes a decision not on the basis of a
comparator single-shot transition, but after multiple events or after the permanence of
comparator trigger conditions for a certain amount of time.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations
It is highly probable that this recommendation is satisfied by design on End user application -
multiple acquisition is a common technique in industrial applications facing electromagnetic
interference on sensor lines.

Table 60. COMP_SM_4

SM CODE COMP_SM_4

Description Comparator lock mechanism

Ownership ST

Detailed implementation This safety mechanism prevents configuration changes for comparator control and status
registers; it addresses therefore systematic faults in the software application.

Error reporting Not applicable

Fault detection time Not applicable

Addressed fault model None (Fault avoidance)

Dependency on Device configuration None

Initialization Lock protection must be enabled through the COMPxLOCK bits of the COMP_CSR register.

Periodicity Continuous

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 40/84

SM CODE COMP_SM_4

Test for the diagnostic Not applicable

Multiple-fault protection Not applicable

Recommendations and known limitations This method does not addresses comparator configuration changes due to soft errors.

3.6.16 Touch sensing controller (TSC)

Table 61. TSC_SM_0

SM CODE TSC_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to TSC configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.11 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 62. TSC_SM_1

SM CODE TSC_SM_1

Description Multiple acquisition by Application software

Ownership End user

Detailed implementation

This method implements a timing information redundancy by executing multiple acquisitions
on TSC input data. Multiple acquisition data are then used to determine the acquisition correct
state.

This method overlaps on the native features of the TSC module of counting events to ensure
a stable acquisition against external noise.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations None

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 41/84

Table 63. TSC_SM_2

SM CODE TSC_SM_2

Description Application-level detection of permanent failures of TSC acquisition

Ownership End user

Detailed implementation This method must detect TSC module permanent failure leading to wrong or missing
acquisition of touch sensing events.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

Due to the strictly application-dependent nature of this solution, no detailed guidelines for its
implementation are given here. As a solution fully based on microcontroller resources is
impossible, it is necessary to leverage on the contribution from other components of the final
system.

3.6.17 Advanced, general, and low-power timer (TIM1/2/3/14/15/16/17)
As the timers have multiple mutually independent channels possibly used for different functions, the safety
mechanism is selected individually for each channel.

Table 64. ATIM_SM_0

SM CODE ATIM_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation

This method must be applied to advanced, general-purpose and low-power timer configuration
registers.

Detailed information on the implementation of this method can be found in
Section 3.6.11 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 65. ATIM_SM_1

SM CODE ATIM_SM_1

Description 1oo2 for counting timers

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 42/84

SM CODE ATIM_SM_1

Ownership End user

Detailed implementation

This method implements via software a 1oo2 scheme between two counting resources.

The guidelines for the implementation of the method are the following:
• Two timers are programmed with same time base or frequency.
• In case of timer use as a time base: use in Application software one of the timer as time

base source, and the other one just for check. Coherence check for the 1oo2 is done at
application level, comparing two counter values each time the timer value is used to
affect safety function.

• In case of interrupt generation: use the first timer as main interrupt source for the service
routines, and the second timer as a “reference” to be checked at the initial of interrupt
routine.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations
Tolerance implementation in timer checks is recommended to avoid false positive outcomes of
the diagnostic.

This method applies to timer channels merely used as elapsed time counters.

Table 66. ATIM_SM_2

SM CODE ATIM_SM_2

Description 1oo2 for input capture timers

Ownership End user

Detailed implementation

This method is conceived to protect timers used for acquisition and measurement of external
signals (input capture, encoder reading). The implementation consists in connecting the
external signals also to a redundant timer, and checking the coherence of the measured data
at application level.

Coherence check between timers is executed each time the reading is used by Application
software.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations
To reduce the potential effect of common cause failures, it is suggested to use for redundant
check a channel belonging to a different timer module and mapped to non-adjacent pin on the
device package.

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 43/84

Table 67. ATIM_SM_3

SM CODE ATIM_SM_3

Description Loopback scheme for pulse width modulation (PWM) outputs

Ownership End user

Detailed implementation

This method is implemented by connecting the PWM to a separate timer channel to acquire
the generated waveform characteristics.

The guidelines are the following:
• Both PWM frequency and duty cycle are measured and checked versus the expected

value.
• To reduce the potential effect of common cause failure, it is suggested to use for the

loopback check a channel belonging to a different timer module and mapped to non-
adjacent pins on the device package.

This measure can be replaced under the end-user responsibility by different loopback
schemes already in place in the final application and rated as equivalent. For example if the
PWM is used to drive an external power load, the reading of the on-line current value can be
used instead of the PWM duty cycle measurement.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Depends on implementation

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

Efficiency versus transient failures is linked to final application characteristics. We define as
Tm the minimum duration of PWM wrong signal permanence (wrong frequency, wrong duty, or
both) required to violate the related safety function(s). Efficiency is maximized when execution
test frequency is higher than 1/Tm.

Table 68. ATIM_SM_4

SM CODE ATIM_SM_4

Description Lock bit protection for timers

Ownership ST

Detailed implementation
This safety mechanism allows End user to lock down specified configuration options, thus
avoiding unintended modifications by Application software. Therefore, it addresses software
development systematic faults.

Error reporting Not applicable

Fault detection time Not applicable

Addressed fault model None (Fault avoidance)

Dependency on Device configuration None

Initialization Lock protection must be enabled using LOCK bits in the TIMx_BDTR register.

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection Not applicable

Recommendations and known limitations This method does not address timer configuration changes due to soft errors.

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 44/84

Note: IRTIM is not individually mentioned here as its implementation is mostly based on general-purpose timer
functions. Refer to related prescriptions.

3.6.18 Basic timers (TIM6/7)

Table 69. GTIM_SM_0

SM CODE GTIM_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to basic timer configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.11 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 70. GTIM_SM_1

SM CODE GTIM_SM_1

Description 1oo2 for counting timers

Ownership End user

Detailed implementation

This method implements via software a 1oo2 scheme between two counting resources.

The guidelines for the implementation of the method are the following:
• Two timers are programmed with same time base or frequency.
• In case of timer use as a time base: use in Application software one of the timer as time

base source, and the other one just for check. Coherence check for the 1oo2 is done at
application level, comparing two counters values each time the timer value is used to
affect safety function.

• In case of interrupt generation usage: use the first timer as main interrupt source for the
service routines, and use the second timer as a “reference” to be checked at the initial of
interrupt routine.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations Tolerance implementation in timer checks is recommended to avoid false positive outcomes of
the diagnostic.

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 45/84

3.6.19 Real-time clock module (RTC)

Table 71. RTC_SM_0

SM CODE RTC_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to RTC configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.11 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 72. RTC_SM_1

SM CODE RTC_SM_1

Description Application check of running RTC

Ownership End user

Detailed implementation

Application software implements some plausibility check on RTC calendar or timing data,
mainly after a power-up and further date reading by RTC.

The guidelines for the implementation of the method are the following:
• RTC backup registers are used to store coded information in order to detect the

absence of VBAT during power-off period.
• RTC backup registers are used to periodically store compressed information on current

date or time
• Application software executes minimal consistence checks for date reading after power-

on (detecting “past” date or time retrieve).
• Application software periodically checks that RTC is actually running, by reading RTC

timestamp progress and comparing with an elapsed time measurement based on
STM32 internal clock or timers.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 46/84

SM CODE RTC_SM_1

Recommendations and known limitations

This method provides a limited diagnostic coverage for RTC failure modes. In case of End
user application where RTC timestamps accuracy can affect in severe way the safety function
(for example, medical data storage devices), it is strongly recommended to adopt more
efficient system-level measures.

Table 73. RTC_SM_2

SM CODE RTC_SM_2

Description Application-level measures to detect failures in timestamps/event capture

Ownership End user

Detailed implementation
This method must detect failures affecting the RTC capability to correct execute the
timestamps/event capture functions. Due to the nature strictly application-dependent of this
solution, no detailed guidelines for its implementation are given here.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic/On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

This method must be used only if the timestamps/event capture function is used in the safety
function implementation. It is worth noting that the use of timestamp / event capture in safety-
related applications with the MCU in Sleep or Stop mode is prevented by the assumed
requirement ASR7 (refer to Section 3.3.1 Safety requirement assumptions).

Table 74. RTC_SM_3

SM CODE RTC_SM_3

Description Application-level measures to detect failures in timestamps/event capture

Ownership End user

Detailed implementation
This method must detect failures affecting the RTC capability to correct execute the
timestamps/event capture functions. Due to the nature strictly application-dependent of this
solution, no detailed guidelines for its implementation are given here.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Periodic/On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

This method must be used only if the timestamps/event capture function is used in the safety
function implementation. It is worth noting that the use of timestamp / event capture in safety-
related applications with the MCU in Sleep or Stop mode is prevented by the assumed
requirement ASR7 (refer to Section 3.3.1 Safety requirement assumptions).

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 47/84

3.6.20 Inter-integrated circuit (I2C)

Table 75. IIC_SM_0

SM CODE IIC_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to I2C configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.11 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 76. IIC_SM_1

SM CODE IIC_SM_1

Description Protocol error signals

Ownership ST

Detailed implementation

I2C communication module embeds protocol error checks (like overrun, underrun, packet
error etc.) conceived to detect network-related abnormal conditions. These mechanisms are
able anyway to detect a marginal percentage of hardware random failures affecting the
module itself.

Error reporting Error flag raise and optional interrupt event generation

Fault detection time Depends on peripheral configuration (for example baud rate). Refer to functional
documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection IIC_SM_2: Information redundancy techniques on messages

Recommendations and known limitations
Adoption of SMBus option grants the activation of more efficient protocol-level hardware
checks such as CRC-8 packet protection.

Enabling related interrupt generation on the detection of errors is highly recommended.

Table 77. IIC_SM_2

SM CODE IIC_SM_2

Description Information redundancy techniques on messages

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 48/84

SM CODE IIC_SM_2

Ownership End user

Detailed implementation

This method is implemented adding to data packets transferred by I2C a redundancy check
(such as a CRC check, or similar one) with encoding capability. The checksum encoding
capability must be robust enough to guarantee at least 90% probability of detection for a
single bit flip in the data packet.

Consistency of data packet must be checked by Application software before consuming data.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

It is assumed that the remote I2C counterpart has an equivalent capability of performing the
check described.

To give an example on checksum encoding capability, using just a bit-by-bit addition is
unappropriated.

This method is superseded by IIC_SM_3 if hardware handled CRC insertion is possible.

Table 78. IIC_SM_3

SM CODE IIC_SM_3

Description CRC packet-level

Ownership ST

Detailed implementation I2C communication module allows to activate for specific mode of operation (SMBus) the
automatic insertion (and check) of CRC checksums to packet data.

Error reporting Error flag raise and optional Interrupt Event generation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic

Direct test procedure for CRC efficiency is not available. CRC run-time hardware failures
leading to disabling such protection fall into multiple-fault scenario, from IEC61508
perspective. Related failures are adequately mitigated by the combination of safety
mechanisms reported in this table, field Multiple-fault protection.

Multiple-fault protection IIC_SM_2: Information redundancy techniques on messages

Recommendations and known limitations

This method can be part of the implementation for IIC_SM_2 or IIC_SM_4. In that case,
because of the warning issued in the Test for the diagnostic field, this mechanism can not be
the only one to guarantee message integrity.

Enabling related interrupt generation on the detection of errors is highly recommended.

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 49/84

Table 79. IIC_SM_4

SM CODE IIC_SM_4

Description Information redundancy techniques on messages, including end-to-end protection

Ownership End user

Detailed implementation
This method aims to protect the communication between a I2C peripheral and his external
counterpart.

Refer to UART_SM_3 description for detailed information.

Error reporting Refer to UART_SM_3

Fault detection time Refer to UART_SM_3

Addressed fault model Refer to UART_SM_3

Dependency on Device configuration Refer to UART_SM_3

Initialization Refer to UART_SM_3

Periodicity Refer to UART_SM_3

Test for the diagnostic Refer to UART_SM_3

Multiple-fault protection Refer to UART_SM_3

Recommendations and known limitations
It is assumed that the remote I2C counterpart has an equivalent capability of performing the
checks described.

Refer to UART_SM_3 for further notice.

3.6.21 Universal synchronous/asynchronous and low-power universal asynchronous receiver/
transmitter (USART)

Table 80. UART_SM_0

SM CODE UART_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to USART configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.11 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 81. UART_SM_1

SM CODE UART_SM_1

Description Protocol error signals

Ownership ST

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 50/84

SM CODE UART_SM_1

Detailed implementation

USART communication module embeds protocol error checks (like additional parity bit check,
overrun, frame error) conceived to detect network-related abnormal conditions. These
mechanisms are able anyway to detect a marginal percentage of hardware random failures
affecting the module itself.

Error signals connected to these checkers are normally handled in a standard communication
software, so the overhead is reduced.

Error reporting Error flag raise and optional interrupt event generation

Fault detection time Depends on peripheral configuration (for example baud rate). Refer to functional
documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection UART_SM_2: Information redundancy techniques on messages

Recommendations and known limitations
USART communication module allows several different configurations. The actual composition
of communication error checks depends on the selected configuration.

Enabling related interrupt generation on the detection of errors is highly recommended.

Table 82. UART_SM_2

SM CODE UART_SM_2

Description Information redundancy techniques on messages

Ownership End user

Detailed implementation

This method is implemented by adding to data packets transferred by USART a redundancy
check (such as a CRC check, or similar one) with encoding capability. The checksum
encoding capability must be robust enough to guarantee at least 90% probability of detection
for a single bit flip in the data packet.

Consistency of data packet must be checked by Application software before consuming data.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

It is assumed that the remote USART counterpart has an equivalent capability of performing
the check described.

To give an example on checksum encoding capability, using just a bit-by-bit addition is
unappropriated.

Table 83. UART_SM_3

SM CODE UART_SM_3

Description Information redundancy techniques on messages, including end-to-end protection

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 51/84

SM CODE UART_SM_3

Ownership End user

Detailed implementation

This method aims to protect the communication between a peripheral and his external
counterpart establishing a kind of “protected” channel. The aim is to specifically address
communication failure modes as reported in IEC61508:2, 7.4.11.1.

Implementation guidelines are as follows:
• Data packet must be protected (encapsulated) by an information redundancy check, like

for instance a CRC checksum computed over the packet and added to payload.
Checksum encoding capability must be robust enough to guarantee at least 90%
probability of detection for a single-bit flip in the data packet.

• Additional field added in payload reporting an unique identification of sender or receiver
and an unique increasing sequence packet number.

• Timing monitoring of the message exchange (for example check the message arrival
within the expected time window), detecting therefore missed message arrival
conditions.

• Application software must verify before consuming data packet its consistency (CRC
check), its legitimacy (sender or receiver) and the sequence correctness (sequence
number check, no packets lost).

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

A major overlap between the requirements of this method and the implementation of complex
communication software protocols can exists. Due to large adoption of these protocols in
industrial applications, optimizations can be possible.

It is assumed that the remote counterpart has an equivalent capability of performing the
checks described.

3.6.22 Serial peripheral interface (SPI)

Table 84. SPI_SM_0

SM CODE SPI_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to SPI configuration registers.

Detailed information on the implementation of this method can be found in
Section 3.6.11 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 52/84

SM CODE SPI_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 85. SPI_SM_1

SM CODE SPI_SM_1

Description Protocol error signals

Ownership ST

Detailed implementation

SPI communication module embeds protocol error checks (like overrun, underrun, timeout
and so on) conceived to detect network-related abnormal conditions. These mechanisms are
able anyway to detect a marginal percentage of hardware random failures affecting the
module itself.

Error reporting Error flag raise and optional interrupt event generation

Fault detection time Depends on peripheral configuration (for example baud rate). Refer to functional
documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection SPI_SM_2: Information redundancy techniques on messages

Recommendations and known limitations None

Table 86. SPI_SM_2

SM CODE SPI_SM_2

Description Information redundancy techniques on messages

Ownership End user

Detailed implementation

This method is implemented adding to data packets transferred by SPI a redundancy check
(such as a CRC check, or similar one) with encoding capability. The checksum encoding
capability must be robust enough to guarantee at least 90% probability of detection for a
single bit flip in the data packet.

Consistency of data packet must be checked by Application software before consuming data.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

It is assumed that the remote SPI counterpart has an equivalent capability of performing the
check described.

To give an example on checksum encoding capability, using just a bit-by-bit addition is
unappropriated.

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 53/84

Table 87. SPI_SM_3

SM CODE SPI_SM_3

Description CRC packet-level

Ownership ST

Detailed implementation SPI communication module allows to activate automatic insertion (and check) of CRC-8 or
CRC-18 checksums to packet data.

Error reporting Error flag raise and optional Interrupt Event generation

Fault detection time Depends on peripheral configuration (for example baud rate). Refer to functional
documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic

Direct test procedure for CRC efficiency is not available. CRC run-time hardware failures
leading to disabling such protection fall into multiple-fault scenario, from IEC61508
perspective. Related failures are adequately mitigated by the combination of safety
mechanisms reported in this table, field Multiple-fault protection.

Multiple-fault protection SPI_SM_2: Information redundancy techniques on messages

Recommendations and known limitations
This method can be part of the implementation for SPI_SM_2 or SPI_SM_4. In that case,
because of the warning issued in the Test for the diagnostic field, this mechanism can not be
the only one to guarantee message integrity.

Table 88. SPI_SM_4

SM CODE SPI_SM_4

Description Information redundancy techniques on messages, including end-to-end protection

Ownership End user

Detailed implementation
This method aims to protect the communication between SPI peripheral and his external
counterpart.

Refer to UART_SM_3 description for detailed information.

Error reporting Refer to UART_SM_3

Fault detection time Refer to UART_SM_3

Addressed fault model Refer to UART_SM_3

Dependency on Device configuration Refer to UART_SM_3

Initialization Refer to UART_SM_3

Periodicity Refer to UART_SM_3

Test for the diagnostic Refer to UART_SM_3

Multiple-fault protection Refer to UART_SM_3

Recommendations and known limitations
Refer to UART_SM_3 for further notice.

It is assumed that the remote SPI counterpart has an equivalent capability of performing the
checks described.

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 54/84

3.6.23 Controller area network (CAN)

Table 89. CAN_SM_0

SM CODE CAN_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to CAN configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.11 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 90. CAN_SM_1

SM CODE CAN_SM_1

Description Protocol error signals

Ownership ST

Detailed implementation

CAN communication module embeds protocol error checks (like error counters) conceived to
detect network-related abnormal conditions. These mechanisms are able anyway to detect a
marginal percentage of hardware random failures affecting the module itself.

Error signals connected to these checkers are normally handled in a standard communication
software, so the overhead is reduced.

Error reporting Several error condition are reported by flag bits in related CAN registers.

Fault detection time Depends on peripheral configuration (for example baud rate). Refer to functional
documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CAN_SM_2: Information redundancy techniques on messages, including end-to-end
protection.

Recommendations and known limitations Enabling related interrupt generation on the detection of errors is highly recommended.

Table 91. CAN_SM_2

SM CODE CAN_SM_2

Description Information redundancy techniques on messages, including end-to-end protection.

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 55/84

SM CODE CAN_SM_2

Ownership End user

Detailed implementation

This method aims to protect the communication between a peripheral and his external
counterpart establishing a kind of “protected” channel. The aim is to specifically address
communication failure modes as reported in IEC61508:2, 7.4.11.1.

Implementation guidelines are as follows:
• Data packet must be protected (encapsulated) by an information redundancy check, like

for instance a CRC checksum computed over the packet and added to payload.
Checksum encoding capability must be robust enough to guarantee at least 90%
probability of detection for a single-bit flip in the data packet.

• Additional field added in payload reporting an unique identification of sender or receiver
and an unique increasing sequence packet number.

• Timing monitoring of the message exchange (for example check the message arrival
within the expected time window), detecting therefore missed message arrival
conditions.

• Application software must verify before consuming data packet its consistency (CRC
check), its legitimacy (sender or receiver) and the sequence correctness (sequence
number check, no packets lost).

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

A major overlap between the requirements of this method and the implementation of complex
communication software protocols can exists. Due to large adoption of these protocols in
industrial applications, optimizations can be possible.

It is assumed that the remote counterpart has an equivalent capability of performing the
checks described.

3.6.24 USB on-the-go full-speed (OTG_FS)

Table 92. USB_SM_0

SM CODE USB_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to USB OTG_FS configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.11 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 56/84

SM CODE USB_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 93. USB_SM_1

SM CODE USB_SM_1

Description Protocol error signals

Ownership ST

Detailed implementation

USB communication module embeds protocol error checks (like overrun, underrun, NRZI, bit
stuffing etc.) conceived to detect network-related abnormal conditions. These mechanisms are
able anyway to detect a marginal percentage of hardware random failures affecting the
module itself

Error reporting Error flag raise and optional interrupt event generation

Fault detection time Depends on peripheral configuration (for example baud rate). Refer to functional
documentation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection USB_SM_2: Information redundancy techniques on messages

Recommendations and known limitations Enabling related interrupt generation on the detection of errors is highly recommended.

Table 94. USB_SM_2

SM CODE USB_SM_2

Description Information redundancy techniques on messages

Ownership End user or ST

Detailed implementation
The implementation of required information redundancy on messages, USB communication
module is fitted by hardware capability. It basically allows to activate the automatic insertion
(and check) of CRC checksums to packet data.

Error reporting Error flag raise and optional interrupt event generation

Fault detection time Depends on peripheral configuration (for example baud rate). Refer to functional
documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Error reporting configuration, if interrupt events are planned

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations None

Table 95. USB_SM_3

SM CODE USB_SM_3

Description Information redundancy techniques on messages, including end-to-end protection.

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 57/84

SM CODE USB_SM_3

Ownership End user

Detailed implementation
This method aims to protect the communication between the USB OTG_FS peripheral and its
external counterpart.

Refer to UART_SM_3 description for detailed information.

Error reporting Refer to UART_SM_3

Fault detection time Refer to UART_SM_3

Addressed fault model Refer to UART_SM_3

Dependency on Device configuration Refer to UART_SM_3

Initialization Refer to UART_SM_3

Periodicity Refer to UART_SM_3

Test for the diagnostic Refer to UART_SM_3

Multiple-fault protection Refer to UART_SM_3

Recommendations and known limitations
This method applies in case USB bulk or isochronous transfers are used. For other transfers
modes the USB hardware protocol already implements several features of this requirement.

Refer to UART_SM_3 for further notice.

3.6.25 HDMI-CEC (CEC)

Table 96. HDMI_SM_0

SM CODE HDMI_SM_0

Description Periodic read-back of configuration registers

Ownership End user

Detailed implementation
This method must be applied to CEC configuration registers.
Detailed information on the implementation of this method can be found in
Section 3.6.11 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

Table 97. HDMI_SM_1

SM CODE HDMI_SM_1

Description Protocol error signals

Ownership ST

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 58/84

SM CODE HDMI_SM_1

Detailed implementation

CEC communication module embeds protocol error checks (such as additional parity bit
check, overrun, frame error) conceived to detect network-related abnormal conditions. These
mechanisms are able anyway to detect a marginal percentage of hardware random failures
affecting the module itself.

Error signals connected to these checkers are normally handled in a standard communication
software, so the overhead is reduced.

Error reporting Error flag raise and optional interrupt event generation

Fault detection time Depends on peripheral configuration (for instance baud rate). Refer to functional
documentation.

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity Continuous

Test for the diagnostic Not applicable

Multiple-fault protection HDMI_SM_2: Information redundancy techniques on messages

Recommendations and known limitations Enabling related interrupt generation on the detection of errors is highly recommended.

Table 98. HDMI_SM_2

SM CODE HDMI_SM_2

Description Information redundancy techniques on messages

Ownership End user

Detailed implementation

This method is implemented adding to data packets transferred by CEC a redundancy check
(such as CRC check, or similar one) with encoding capability. The checksum encoding
capability must be robust enough to guarantee at least 90% probability of detection for a
single bit flip in the data packet.

Consistency of data packet must be checked by Application software before consuming data.

Error reporting Depends on implementation

Fault detection time Depends on implementation

Addressed fault model Permanent/transient

Dependency on Device configuration None

Initialization Depends on implementation

Periodicity On demand

Test for the diagnostic Not applicable

Multiple-fault protection CPU_SM_0: Periodic core self-test software

Recommendations and known limitations

It is assumed that the remote HDMI-CEC counterpart has an equivalent capability of
performing the check described.

To give an example on checksum encoding capability, using just a bit-by-bit addition is
inappropriate.

3.6.26 Part separation (no interference)
This section reports safety mechanisms that address peripherals not used by the safety application, or not used at
all.

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 59/84

Table 99. FFI_SM_0

SM CODE FFI_SM_0

Description Disable of unused peripherals

Ownership End user

Detailed implementation

This method contributes to the reduction of the probability of cross-interferences caused by
peripherals not used by the software application, in case a hardware failure causes an
unintentional activation.

After the system boot, Application software must disable all unused peripherals with this
procedure:
• Enable reset flag on AHB and APB peripheral reset register.
• Disable clock distribution on AHB and APB peripheral clock enable register.

Error reporting Not applicable

Fault detection time Not applicable

Addressed fault model Not applicable

Dependency on Device configuration None

Initialization Not applicable

Periodicity Startup

Test for the diagnostic Not applicable

Multiple-fault protection FFI_SM_1: Periodic read-back of interference avoidance registers

Recommendations and known limitations None

Table 100. FFI_SM_1

SM CODE FFI_SM_1

Description Periodic read-back of interference avoidance registers

Ownership End user

Detailed implementation

This method contributes to the reduction of the probability of cross-interferences between
peripherals that can potentially conflict on the same input/output pins, including for instance
unused peripherals. This diagnostic measure must be applied to following registers:
• clock enable and disable registers
• alternate function programming registers

Detailed information on the implementation of this method can be found in
Section 3.6.11 Extended interrupt and events controller (EXTI).

Error reporting Refer to NVIC_SM_0

Fault detection time Refer to NVIC_SM_0

Addressed fault model Refer to NVIC_SM_0

Dependency on Device configuration Refer to NVIC_SM_0

Initialization Refer to NVIC_SM_0

Periodicity Refer to NVIC_SM_0

Test for the diagnostic Refer to NVIC_SM_0

Multiple-fault protection Refer to NVIC_SM_0

Recommendations and known limitations Refer to NVIC_SM_0

 UM1741
Hardware and software diagnostics

UM1741 - Rev 8 page 60/84

3.7 Conditions of use

The table below provides a summary of the safety concept recommendations reported in Section 3.6: Description
of hardware and software diagnostics. The conditions of use to be applied to STM32F0 Series devices are
reported in form of safety mechanism requirements. Exception is represented by some conditions of use
introduced by FMEA analysis in order to correctly address specific failure modes. These conditions of use are
reported at the end of the table presented in this section.
Rank column reports how related safety mechanism has been considered during the analysis, with following
meaning:

M The safety mechanism is always active during normal operation, with no possibility for End user to deactivate it.

++ The safety mechanism is highly recommended as common practice. It is considered in this document for the
computation of safety metrics to allow the use of Device in systems implementing safety functions up to SIL2 with
a single MCU or up to SIL3 with two MCUs in 1oo2 scheme.

+ The safety mechanism is recommended as additional safety measure, but not considered in this document for the
computation of safety metrics. STM32F0 Series users can skip the implementation in case it is in contradiction with
functional requirements or overlapped by another mechanism ranked ++.

o The safety mechanism is optional. It is not strictly required for the implementation of safety functions up to SIL2, or
it is related to a specific MCU configuration.

The X marker in the Perm and Trans table columns indicates that the related safety mechanism is effective for
such fault model.

Table 101. List of safety mechanisms

Diagnostic Description Rank Perm Trans

Arm® Cortex®-M0

CPU_SM_0 Periodic core self-test software for Arm®Cortex®-
M0 CPU.

++ X -

CPU_SM_1 Control flow monitoring in Application software ++ X X

CPU_SM_2 Double computation in Application software ++ - X

CPU_SM_3 Arm®Cortex®-M0 HardFault exceptions M X X

CPU_SM_4 Stack hardening for Application software + X X

CPU_SM_5 External watchdog ++(1) X X

CPU_SM_6 Independent watchdog ++(1) X X

System bus architecture

BUS_SM_0 Periodic software test for interconnections ++ X -

BUS_SM_1 Information redundancy in intra-chip data exchanges ++ X X

Embedded SRAM

RAM_SM_0 Periodic software test for static random access memory
(SRAM) ++ X -

RAM_SM_1 Parity on SRAM2 ++ X X

RAM_SM_2 Stack hardening for Application software + X X

RAM_SM_3 Information redundancy for safety-related variables in
Application software ++ X X

RAM_SM_4 Control flow monitoring in Application software o(2) X X

 UM1741
Conditions of use

UM1741 - Rev 8 page 61/84

Diagnostic Description Rank Perm Trans

RAM_SM_5 Periodic integrity test for Application software in RAM o(2) X X

Embedded Flash memory

FLASH_SM_0 Periodic software test for Flash memory ++ X -

FLASH_SM_1 Control flow monitoring in Application software ++ X X

FLASH_SM_2 Arm®Cortex®-M0 HardFault exceptions M X X

FLASH_SM_3 Option byte write protection M - -

FLASH_SM_4 Static data encapsulation + X X

FLASH_SM_5 Option byte redundancy with load verification M X X

FLASH_SM_6 Flash memory unused area filling code + - -

Power controller (PWR)

VSUP_SM_0 Periodic read-back of configuration registers ++ X X

VSUP_SM_1 Supply voltage internal monitoring (PVD) ++ X -

VSUP_SM_2 Independent watchdog ++ X -

VSUP_SM_3 Internal temperature sensor check o - -

VSUP_SM_5 System-level power supply management + - -

Reset and clock controller (RCC)

CLK_SM_0 Periodic read-back of configuration registers ++ X X

CLK_SM_1 Clock security system (CSS) ++ X -

CLK_SM_2 Independent watchdog ++ X -

CLK_SM_3 Internal clock cross-measurement + X -

General-purpose input/output (GPIO)

GPIO_SM_0 Periodic read-back of configuration registers ++ X X

GPIO_SM_1 1oo2 for input GPIO lines ++ X X

GPIO_SM_2 Loopback scheme for output GPIO lines ++ X X

GPIO_SM_3 GPIO port configuration lock register + - -

Debug system or peripheral control

DBG_SM_0 Watchdog protection ++ X X

LOCK_SM_0 Lock mechanism for configuration options + - -

System configuration controller (SYSCFG)

SYSCFG_SM_0 Periodic read-back of configuration registers ++ X X

DIAG_SM_0 Periodic read-back of hardware diagnostics configuration
registers ++ X X

Direct memory access controller (DMA)

DMA_SM_0 Periodic read-back of configuration registers ++ X X

DMA_SM_1 Information redundancy on data packet transferred via
DMA ++ X X

DMA_SM_2 Information redundancy by including sender or receiver
identifier on data packet transferred via DMA ++ X X

DMA_SM_3 Periodic software test for DMA ++ X -

DMA_SM_4 DMA transaction awareness ++ X X

 UM1741
Conditions of use

UM1741 - Rev 8 page 62/84

Diagnostic Description Rank Perm Trans

Extended interrupt and events controller (EXTI)

NVIC_SM_0 Periodic read-back of configuration registers ++ X X

NVIC_SM_1 Expected and unexpected interrupt check ++ X X

Cyclic redundancy-check calculation unit (CRC)

CRC_SM_0 CRC self-coverage ++ X X

Analog-to-digital converter (ADC)

ADC_SM_0 Periodic read-back of configuration registers ++ X X

ADC_SM_1 Multiple acquisition by Application software ++ - X

ADC_SM_2 Range check by Application software ++ X X

ADC_SM_3 Periodic software test for ADC ++ X -

Digital-to-analog converter (DAC)

DAC_SM_0 Periodic read-back of configuration registers ++ X X

DAC_SM_1 DAC output loopback on ADC channel ++ X X

Comparator (COMP)

COMP_SM_0 Periodic read-back of configuration registers ++ X X

COMP_SM_1 1oo2 scheme for comparator ++ X X

COMP_SM_2 Plausibility check on inputs + X -

COMP_SM_3 Multiple acquisition by Application software + - X

COMP_SM_4 Comparator lock mechanism + - -

Touch sensing controller (TSC)

TSC_SM_0 Periodic read-back of configuration registers ++ X X

TSC_SM_1 Multiple acquisition by Application software ++ - X

TSC_SM_2 Application-level detection of permanent failures of TSC
acquisition + X -

Advanced, general, and low-power timer (TIM1/2/3/14/15/16/17)

ATIM_SM_0 Periodic read-back of configuration registers ++ X X

ATIM_SM_1 1oo2 for counting timers ++ X X

ATIM_SM_2 1oo2 for input capture timers ++ X X

ATIM_SM_3 Loopback scheme for pulse width modulation (PWM)
outputs ++ X X

ATIM_SM_4 Lock bit protection for timers + - -

Basic timers (TIM6/7)

GTIM_SM_0 Periodic read-back of configuration registers ++ X X

GTIM_SM_1 1oo2 for counting timers ++ X X

Real-time clock module (RTC)

RTC_SM_0 Periodic read-back of configuration registers ++ X X

RTC_SM_1 Application check of running RTC ++ X X

RTC_SM_2 Application-level measures to detect failures in
timestamps/event capture o X X

RTC_SM_3 Application-level measures to detect failures in
timestamps/event capture o X X

 UM1741
Conditions of use

UM1741 - Rev 8 page 63/84

Diagnostic Description Rank Perm Trans

Inter-integrated circuit (I2C)

IIC_SM_0 Periodic read-back of configuration registers ++ X X

IIC_SM_1 Protocol error signals ++ X X

IIC_SM_2 Information redundancy techniques on messages ++ X X

IIC_SM_3 CRC packet-level + X X

IIC_SM_4 Information redundancy techniques on messages,
including end-to-end protection + X X

Universal synchronous/asynchronous and low-power universal asynchronous receiver/transmitter (USART)

UART_SM_0 Periodic read-back of configuration registers ++ X X

UART_SM_1 Protocol error signals ++ X X

UART_SM_2 Information redundancy techniques on messages ++ X X

UART_SM_3 Information redundancy techniques on messages,
including end-to-end protection ++ X X

Serial peripheral interface (SPI)

SPI_SM_0 Periodic read-back of configuration registers ++ X X

SPI_SM_1 Protocol error signals ++ X X

SPI_SM_2 Information redundancy techniques on messages ++ X X

SPI_SM_3 CRC packet-level + X X

SPI_SM_4 Information redundancy techniques on messages,
including end-to-end protection + X X

Controller area network (CAN)

CAN_SM_0 Periodic read-back of configuration registers ++ X X

CAN_SM_1 Protocol error signals ++ X X

CAN_SM_2 Information redundancy techniques on messages,
including end-to-end protection. ++ X X

USB on-the-go full-speed (OTG_FS)

USB_SM_0 Periodic read-back of configuration registers ++ X X

USB_SM_1 Protocol error signals ++ X X

USB_SM_2 Information redundancy techniques on messages ++ X X

USB_SM_3 Information redundancy techniques on messages,
including end-to-end protection. + X X

HDMI-CEC (CEC)

HDMI_SM_0 Periodic read-back of configuration registers ++ X X

HDMI_SM_1 Protocol error signals + X X

HDMI_SM_2 Information redundancy techniques on messages ++ X X

Part separation (no interference)

FFI_SM_0 Disable of unused peripherals ++ - -

FFI_SM_1 Periodic read-back of interference avoidance registers ++ - -

Arm®Cortex®-M0 CPU

CoU_1 Disable of unused peripherals ++ - -

Debug

CoU_2 Device debug features must not be used in safety
function(s) implementation. ++ - -

 UM1741
Conditions of use

UM1741 - Rev 8 page 64/84

Diagnostic Description Rank Perm Trans

Arm®Cortex®-M0 / Supply system

CoU_3 Low-power mode state must not be used in safety
function(s) implementation. ++ - -

Device peripherals

CoU_4
End user must implement the required combination of
safety mechanism/CoUs for each STM32 peripheral used
in implementation of safety function(s).

++ X X

Flash memory subsystem

CoU_5
During Flash memory bank mass erase and
reprogramming there must not be safety functions(s)
executed by Device.

++ - -

CRS

CoU_8 CRS features must not be used in safety function(s)
implementation. ++ - -

Device

DUAL_SM_0 Cross-check between two STM32 MCUs o X X

1. To achieve on the single MCU local safety metrics compatible with SIL2 target , method CPU_SM_6 could
be sufficient. Anyway, to understand the rationale behind "++" classification for both methods, refer to the
“Recommendations” row of related description in Section 3.6 Hardware and software diagnostics for more
details.

2. Must be considered ranked as “++” if Application software is executed on RAM.

The above-described safety mechanism or conditions of use are conceived with different levels of abstraction
depending on their nature: the more a safety mechanism is implemented as application-independent, the wider is
its possible use on a large range of End user applications.
The safety analysis highlights two major partitions inside the MCU:
• System-critical MCU modules

Every End user application is affected, from safety point of view, by a failure on these modules. Because
they are used by every End user application, related methods or safety mechanism are mainly conceived to
be application-independent. The system-critical modules on Device are: CPU, RCC, PWR, bus matrix and
interconnect, and Flash memory and RAM (including their interfaces).

• Peripheral modules
Such modules could be not used by the end-user application, or they could be used for non-safety related
tasks. Related safety methods are therefore implemented mainly at application level, as Application software
solutions or architectural solutions.

 UM1741
Conditions of use

UM1741 - Rev 8 page 65/84

4 Safety results

This section reports the results of the safety analysis of the STM32F0 Series devices, according to IEC 61508
and to ST methodology flow, related to the hardware random and dependent failures.

4.1 Random hardware failure safety results

The analysis for random hardware failures of STM32F0 Series devices reported in this safety manual is executed
according to STMicroelectronics methodology flow for safety analysis of semiconductor devices in compliance
with IEC61508. The accuracy of results obtained are guaranteed by three factors:
• STMicroelectronics methodology flow strict adherence to IEC61508 requirements and prescriptions
• the use, during the analysis, of detailed and reliable information on microcontroller design
• the use of state-of-the-art fault injection methods and tools for safety metrics verification

The Device safety analysis explored the overall and exhaustive list of Device failure modes, to individuate for
each of them an adequate mitigation measure (safety mechanism). The overall list of Device failure modes is
maintained in the related FMEA document [1], provided on demand by local STMicroelectronics sales office.
In summary, with the adoption of the safety mechanisms and conditions of use reported in
Section 3.7 Conditions of use, it is possible to achieve the integrity levels summarized in the following table.

Table 102. Overall achievable safety integrity levels

Number of
Devices used

Safety
architecture Target Safety analysis result

1 1oo1/1oo1D
SIL2 LD Achievable

SIL2 HD/CM Achievable with potential performance impact (1)

2 1oo2
SIL3 LD Achievable

SIL3 HD/CM Achievable with potential performance impact

1. Note that the potential performance impact related to some above-reported target achievements is mainly related to the
need of execution of periodical software-based diagnostics (refer to safety mechanism description for details). The impact is
therefore strictly related to how much “aggressive” the system level PST is (see Section 3.3.1 Safety requirement
assumptions).

The resulting relative safety metrics (diagnostic coverage (DC) and safe failure fraction (SFF)) and absolute
safety metrics (probability of failure per hour (PFH), probability of dangerous failure on demand (PFD)) are not
reported in this section but in the failure mode effect diagnostic analysis (FMEDA) snapshot [2], due to:
• a large number of different STM32F0 Series parts,
• a possibility to declare non-safety-relevant unused peripherals, and
• a possibility to enable or not the different available safety mechanisms.

The FMEDA snapshot [2] is a static document reporting the safety metrics computed at different detail levels (at
microcontroller level and for microcontroller basic functions) for a given combination of safety mechanisms and for
a given part number. If FMEDA computation sheet is needed, early contact the local STMicroelectronics sales
representative, in order to receive information on expected delivery dates for specific Device target part number.

Note: Safety metrics computations are restricted to STM32F0 Series boundary, hence they do not include the WDTe,
PEv, and VMONe processes described in Section 3.3.1 Safety requirement assumptions).

4.1.1 Safety analysis result customization
The safety analysis executed for STM32F0 Series devices documented in this safety manual considers all
microcontroller modules to be safety-related, thus able to interfere with the safety function, with no exclusion. This
is in line with the conservative approach to be followed during the analysis of a general-purpose microcontroller,
in order to be agnostic versus the final application. This means that no microcontroller module has been declared
safe as per IEC61508-4, 3.6.8. Therefore, all microcontroller modules are included in SFF computations.

 UM1741
Safety results

UM1741 - Rev 8 page 66/84

In actual End user applications, not all the STM32F0 Series parts or modules implement a safety function. That
happens if:
• The part is not used at all (disabled), or
• The part implements functions that are not safety-related (for example, a GPIO line driving a power-on

signaling light on an electronic board).

Note: Implementation of non-safety-related functions is in principle forbidden by the assumed safety requirement
ASR6 (see Section 3.3.1 Safety requirement assumptions), hence under End user's entire responsibility. As
any other derogation from safety requirements included in this manual, it is End user's responsibility to provide
consistent rationales and evidences that the function does not bring additional risks, by following the procedure
described in this section. Therefore, it is strongly recommended to reserve such derogation to very simple
functions (as the one provided in the example).

Implementing safety mechanisms on such parts would be a useless effort for End user. The safety analysis
results can therefore be customized.
End user can define a STM32F0 Series part as non-safety-related based on:
• Collecting rationales and evidences that the part does not contribute to safety function.
• Collecting rationales and evidences that the part does not interfere with the safety function during normal

operation, due to final system design decisions. Mitigation of unused modules is exhaustively addressed in
Section 4.1.2 General requirements for freedom from interferences (FFI).

• Fulfilling the general condition for the mitigation of intra-MCU interferences (see Section 4.1.2 General
requirements for freedom from interferences (FFI)).

For a non-safety-related part, End user is allowed to:
• Exclude the part from computing metrics to report in FMEDA, and
• Not implement safety mechanisms as listed in Table 101. List of safety mechanisms.

With regard to SFF computation, this section complies with the no part / no effect definition as per IEC 61508‑4,
3.6.13 / 3.6.14.

4.1.2 General requirements for freedom from interferences (FFI)
A dedicated analysis has highlighted a list of general requirements to be followed in order to mitigate potential
interferences between Device internal modules in case of internal failures (freedom from interferences, FFI).
These precautions are integral part of the Device safety concept and they can play a relevant role when multiple
microcontroller modules are declared as non-safety-related by End user as per Section 4.1.1 Safety analysis
result customization.
End user must implement the safety mechanisms listed in Table 103 (implementation details in
Section 3.6 Hardware and software diagnostics) regardless any evaluation of their contribution to safety metrics.

Table 103. List of general requirements for FFI

Diagnostic Description

BUS_SM_0 Periodic software test for interconnections

GPIO_SM_0 Periodic read-back of configuration registers

DMA_SM_0 Periodic read-back of configuration registers

DMA_SM_2 Information redundancy by including sender or receiver identifier on data packet transferred via DMA(1)

DMA_SM_4 DMA transaction awareness(1)

NVIC_SM_0 Periodic read-back of configuration registers

NVIC_SM_1 Expected and unexpected interrupt check

FFI_SM_0 Disable of unused peripherals

FFI_SM_1 Periodic read-back of interference avoidance registers

1. To be implemented only if DMA is actually used.

 UM1741
Random hardware failure safety results

UM1741 - Rev 8 page 67/84

4.1.3 Notes on multiple-fault scenario
According to the requirements of IEC61508, the safety analysis for STM32F0 Series devices considered multiple-
fault scenarios. Furthermore, following the spirit of ISO26262 (the reference and state-of-the-art standard norm for
integrated circuit safety analysis), the analysis investigated possible causes preventing the implemented safety
mechanisms from being effective, in order to determine appropriate counter-measures. In the Multiple-fault
protection field, the tables in Section 3.6 Hardware and software diagnostics report the safety mechanisms
required to properly manage a multiple-fault scenario, including mitigation measures against failures making
safety mechanisms ineffective. It is strongly recommended that the safety concept includes such mitigation
measures, and in particular for systems operating during long periods, as they tend to accumulate errors. Indeed,
fault accumulation issue has been taken into account during STM32F0 Series devices safety analysis.
Another potential source of multiple error condition is the accumulation of permanent failures during power-off
periods. Indeed, if the end system is not powered, no safety mechanism are active and so able to early detect the
insurgence of such failures. To mitigate this potential issue, it is strongly recommended to execute all periodic
safety mechanism at each system power-up; this measure guarantees a fresh system start with a fault-free
hardware. This recommendation is given for periodic safety mechanisms rated as "++" (highly recommended) in
the Device safety concept, and mainly for the most relevant ones in term of failure distribution: CPU_SM_0,
FLASH_SM_0, RAM_SM_0. This startup execution is strongly recommended regardless the safety functions
mode of operations and/or the value of PST.

4.2 Analysis of dependent failures

The analysis of dependent failures is important for microcontroller and microprocessor devices. The main
subclasses of dependent failures are CCFs. Their analysis is ruled by IEC 61508:2 annex E, which lists the
design requirements to be verified to allow the use of on-chip redundancy for integrated circuits with one common
semiconductor substrate.
As there is no on-chip redundancy on STM32F0 Series devices, the CCF quantification through the βIC
computation method - as required by Annex E.1, item i - is not required. Note that, in the case of 1oo2 safety
architecture implementation, End user is required to evaluate the β and βD parameters (used in PFH
computation) that reflect the common cause factors between the two channels.
The Device architecture and structures can be potential sources of dependent failures. These are analyzed in the
following sections. The safety mechanisms referred to are described in Section 3.6 Hardware and software
diagnostics.

4.2.1 Power supply
Power supply is a potential source of dependent failures, because any alteration can simultaneously affect many
modules, leading to not-independent failures. The following safety mechanisms address and mitigate those
dependent failures:
• VSUP_SM_1: detection of abnormal value of supply voltage;
• VSUP_SM_2: the independent watchdog is different from the digital core of the MCU, and this diversity

helps to mitigate dependent failures related to the main supply alterations. As reported in VSUP_SM_2
description, separate power supply for IWDG or/and the adoption of an external watchdog (CPU_SM_5)
increase such diversity.

The adoption of such safety mechanisms is therefore highly recommended despite their minor contribution to the
safety metrics to reach the required safety integrity level. Refer to Section 3.6.5 Power controller (PWR) for the
detailed safety mechanism descriptions.

4.2.2 Clock
System clocks are a potential source of dependent failures, because alterations in the clock characteristics
(frequency, jitter) can affect many parts, leading to not-independent failures. The following safety mechanisms
address and mitigate such dependent failures:
• CLK_SM_1: the clock security system is able to detect hard alterations (stop) of system clock and activate

the adequate recovery actions.
• CLK_SM_2: the independent watchdog has a dedicated clock source. The frequency alteration of the

system clock leads to the watchdog window violations by the triggering routine on Application software,
leading to the MCU reset by watchdog.

The adoption of such safety mechanism is therefore highly recommended despite their minor contribution to the
safety metrics to reach the required safety integrity level. Refer to Section 3.6.6 Reset and clock controller
(RCC) for detailed safety mechanisms description.

 UM1741
Analysis of dependent failures

UM1741 - Rev 8 page 68/84

4.2.3 DMA
The DMA function can be involved in data transfers operated by most of the peripherals. Failures of DMA can
interfere with the behavior of the system peripherals or Application software, leading to dependent failures. The
adoption of the following safety mechanisms is therefore highly recommended (refer to Section 3.6.10 Direct
memory access controller (DMA) for description):
• DMA_SM_0
• DMA_SM_1
• DMA_SM_2

Note: Only DMA_SM_0 must be implemented if DMA is not used for data transfer.

4.2.4 Internal temperature
The abnormal increase of the internal temperature is a potential source of dependent failures, as it can affect
many MCU parts. The following safety mechanism mitigates this potential effect (refer to Section 3.6.5 Power
controller (PWR) for description):
VSUP_SM_3: the internal temperature read and check allows the user to quickly detect potential risky conditions
before they lead to a series of internal failures.

 UM1741
Analysis of dependent failures

UM1741 - Rev 8 page 69/84

5 List of evidences

A safety case database stores all the information related to the safety analysis performed to derive the results and
conclusions reported in this safety manual.
The safety case database is composed of the following:
• safety case with the full list of all safety-analysis-related documents
• STMicroelectronics' internal FMEDA tool database for the computation of safety metrics, including estimated

and measured values
• safety report, a document that describes in detail the safety analysis executed on STM32F0 Series devices

and the clause-by-clause compliance to IEC 61508
• STMicroelectronics' internal fault injection campaign database including tool configuration and settings, fault

injection logs and results

As these materials contain STMicroelectronics' confidential information, they are only available for the purpose of
audit and inspection by authorized bodies, without being published, which conforms to Note 2 of IEC 61508:2,
7.4.9.7.

 UM1741
List of evidences

UM1741 - Rev 8 page 70/84

6 Change impact analysis for other safety standards

The safety analysis reported in this safety manual is executed according to the IEC 61508 safety norm. This
section reports the outcome of a change impact analysis with respect to different safety standards. For each new
safety standard addressed, the following items are considered:
• Differences in the suggested hardware architecture (architectural categories), and how to map to safety

architectures of IEC 61508.
• Differences in the safety integrity level definitions and metrics computation methods, and how to recompute

and judge the safety performances of the devices according to the new standard.

The safety standards examined within this change impact analysis are:
• ISO 13849-1:2015, ISO13849-2:2012 – Safety of machinery and Safety-related parts of control systems,
• IEC 62061:2005+AMD1:2012+AMD2:2015 – Safety of machinery and Functional safety of safety-related

electrical, electronic and programmable electronic control systems,
• IEC 61800-5-2:2016 –Adjustable speed electrical power drive systems – Part 5-2: Safety requirements –

Functional

6.1 ISO 13849-1:2015, ISO 13849-2:2012

ISO 13849-1 is a type B1 standard. It provides a guideline for the development of Safety-related parts of
machinery control systems (SRP/CS) including programmable electronics, hardware and software.

6.1.1 ISO 13849 architectural categories
ISO 13849-1:2015 reports in section 4.4, Figure 4 a typical safety function diagrammatic presentation. Under the
assumption that Compliant item as defined in section is used to implement the b (logic), the equivalence of the
ISO 13849 representation with the one in Section 3.2.1 is evident. The mapping of ISO 13849 architectures with
the one described in Section 3 is possible.
ISO 13849-1:2015 in section §6 defines in details five different categories. The following table lists for each
category the possible implementation by one of the IEC 61508 compliant architectures described in this manual in
Section 3 . It is worth to note that for each category, the achievable PL is decided by the specific values of
diagnostic coverage (DC)avg and mean time to dangerous failure (MTTFd) (refer to Section 6.1.2 for details on
computations).

 UM1741
Change impact analysis for other safety standards

UM1741 - Rev 8 page 71/84

Table 104. ISO 13849 architectural categories

ISO13849-1:2015 Link to IEC61508-compliant safety
architectures Notes/constraints

Category Clause

B 6.2.3 Possible with 1oo1 architecture

No requirements for MTTFd and DCavg are
given for category B, anyway it is
recommended to follow safety manual
recommendation.

1 6.2.4 Not recommended Category not recommended because of the
NOTE1 in IEC13849-1, section §6.2.4.

2 6.2.5 Possible with 1oo1 architecture (external
WDT is mandatory)

The adoption of external WDT (CPU_SM_5)
acting as TE is mandatory.

Constraints on DCavg and MTTFd can be
satisfied but computations are needed(1).
Constraints on CCF are satisfied(2).

3 6.2.6 Possible with 1oo2 architecture +
DUAL_SM_0

Constraints on DCavg and MTTFd can be
satisfied but computations are needed(1)

Constraints on CCF are satisfied(2).

4 6.2.7 Possible with 1oo2 architecture +
DUAL_SM_0

Implementation of DUAL_SM_0 scheme is
mandatory to mitigate fault accumulation.

Constraints on DCavg and MTTFd can be
satisfied but computations are needed(1)

Constraints on CCF are satisfied(2).

1. Computations related to DCavg and MTTFd can involve also other components than Device because used
in the safety function implementation (sensors, actuators, etc). The figures need therefore to be evaluated at
system level – refer to Section 6.1.2 for the correct interpretation of Device data in such a computation.

2. CCF additional requirements expressed in ISO13849-1, Annex F table F.1 are basically enforcing the
system implementation and therefore outside the scope of this manual. It is worth to note that the complete
safety analysis resulting as output of the IEC61508 compliance activity (this manual) helps to claim the
score for item #4 in Table F.1.

6.1.2 ISO 13849 safety metrics computation
Appendix C of ISO 13849 presents tables of standardized mean time to dangerous failure (MTTFd) for the various
electric or electronics components. However, table C.3 in ISO 13849 points to ICs manufacturer’s data while
attempting to classify MTTFd for programmable ICs. As a consequence, safety analysis results of this Safety
Manual can be re-mapped in ISO 13849 domain, because even computed for IEC 61508 they are definitely more
and more accurate in the definition of dangerous failures identification.
When for a certain component PFH << 1 it can be assumed that MTTFd = 1 / PFH.
It is worth to note that according ST methodology, FMEDA data includes failure rate related to transient faults
without any assumption about their potential partial safeness. Because of this assumption, PFH values in Device
FMEDA leads to very conservative values for computed MTTFd.
In ISO 13849-1 the DC for each single component has the same meaning of the IEC 61508 metric; results of this
safety manual and related FMEA/FMEDA can therefore be reused. However, this standard defines the concept of
DCavg applicable to the whole SRP/CS in the form of the equation defined in Annex E, formula E.1, where the
contribution of each part of the control system is weighted with respect to MTTFd of the various subsystems of the
channel. End user is therefore responsible for the computations of the overall DCavg.
The standard denies any possibility of fault exclusion while calculating DCavg (ISO13849-2 Tab.D.21 no exclusion
allowed), which is also the assumption of Device analysis documented in this safety manual.

Note: Each architectural solution analyzed in this safety manual results in PFH values producing high MTTFd.

 UM1741
ISO 13849-1:2015, ISO 13849-2:2012

UM1741 - Rev 8 page 72/84

6.2 IEC 62061:2005+AMD1:2012+AMD2:2015

This standard is applicable in the specification, design and verification or validation of safety-related electrical
control systems (SRECS) of machines. SRECS is the electrical or electronics control system of the machine
which failure could lead to reduction or loss of safety. SRECS implements a safety-related control function (SRCF)
to prevent any increase of the risk.
Because STM32xx has been classified as Type B according IEC61508 (refer to Section 3.2.2), it must be
considered as a “complex component” in IEC62061 definition.

6.2.1 IEC 62061 architectural categories
IEC 62061 defines a set of basic system architectures to be used for the design of safety-related electrical control
systems (safety-related electrical control systems (SRECS)) implementing their SRCFs. The following table lists
for each system architecture the possible implementation/mapping by/to one of the IEC 61508 compliant
architectures described in this manual in Section 3 .
Safety metrics related to STM32xx MCU can be reused from IEC61508 analysis (refer to Device FMEDA), while
their combination with the ones related to other devices included in the system is full responsibility of End user.

Table 105. IEC 62061 architectural categories

IEC 62061 Link to IEC61508-compliant safety
architectures Notes/constraints

Architecture Clause

A 6.7.8.2.2 Equivalent of 1oo1, with HFT = 0, no
diagnostic function(s) implemented. -

B 6.7.8.2.3
Equivalent to 1oo2 with HFT = 1, a single
failure does not lead to the loss of SRCF.

No diagnostic function(s) implemented.
-

C 6.7.8.2.4 Equivalent of 1oo1 architecture. All requirements related to 1oo1 architecture
must be implemented.

D 6.7.8.2.5 Equivalent of 1oo2 architecture. All requirements related to 1oo2 architecture
must be implemented.

6.2.2 IEC 62061 safety metrics computation
The failure rate (λ) in T is the smaller proof test interval or the life time of the subsystem.
As seen in ISO 13849, the approximation §6.7.8.2.1 NOTE2 is still considered valid, hence
λ = 1 / MTTFd, where it is assumed that 1 >> λ x T.
So, as PFHD = λD x 1h, so PFD = 1 / MTTFd.
Safety analysis executed for STM32F0 Series devices according to IEC 61508 is more and more accurate for the
definition of dangerous failure identifications that can be re-mapped in IEC 62061 domain. Thus, values of λ, PFH
and SFF that are reported in the FMEDA (refer to Section 4 Safety results), are still valid and can be reused.
For evaluation of CCF in basic architectures with HFT = 1, End user can rely to what reported in
Section 4.2 Analysis of dependent failures, and to the guidelines included in IEC 61508:2010-6 Annex D.
Alternatively, End user can apply the simplified approach from the standard (refer to Annex F) to calculate the β
factor value to be used in formulas for PFD.

 UM1741
IEC 62061:2005+AMD1:2012+AMD2:2015

UM1741 - Rev 8 page 73/84

6.3 IEC 61800-5-2:2016

The scope of this standard is the functional safety of adjustable speed electric drive systems.

6.3.1 IEC 61800 architectural categories
Because IEC 61800 definitions for HFT and for architectures are equivalent to the ones of IEC61508, the
remapping is straightforward.
The STM32xx MCU is considered as Type B for the consideration reported in Section 3.2.2 .

6.3.2 IEC 61800 safety metrics computation
The PFH of a safety function performed by PDS(SR) is evaluated by the application of IEC 61508-2. The strong
link with the norm IEC 61508 is reflected also by the adoption in IEC 61800-5-2 of the same relevant metrics PFH,
and SFF. So, results of this safety manual (and related FMEA and FMEDA) can be re-mapped in IEC 61800
domain.

 UM1741
IEC 61800-5-2:2016

UM1741 - Rev 8 page 74/84

Revision history

Table 106. Document revision history

Date Version Changes

19-Jun-2014 1 Initial release.

30-Jan-2015 2

Extended the user manual applicability to STM32F0 Series and to STM32-
SafeSIL part number.

Updated:
• Figure 1: STMicroelectronics product development process
• Figure 16: Block diagram for IEC 62061 Cat. B
• Figure 18: Block diagram for IEC 62061 Cat. D

03-Mar-2015 3
Replaced all NVC occurrences with NVIC in Table 3: List of safety
mechanisms and in Table 17: List of STM32F0 Series safety mechanism
overlapped by fRSTL_STM32F0_SIL2(3).

05-Oct-2017 4

• Removed:

former fR Methodology,

Dual MCU architecture,

Latent Fault detection,

examples of safety architecture,

fRSTL_STM32F0_SIL2(3)
• Added:

Figure 3: 1oo1 reference architecture,

Figure 4: 1oo2 reference architecture,

Section 3.6.26: System configuration controller (SYSCFG),

Section 3.6.28: Notes on multiple faults scenario,

Table 5 to Table 102 for description of hardware and software diagnostics
• Updated:

Section 3.3.1: Assumed safety requirements,

Section A.4.1: Architectural categories,

Table 104: Overall achievable safety integrity levels,

Table 112: IEC 60730 required safety mechanism for Class B/C compliance

24-Apr-2018 5

• Updated:

Reference of “IEC 13849” was updated to “ISO 13549” in the whole
document, including titles of Figure 6, Figure 7, Figure 8, Table 106 and Table
107

Table 103: List of safety mechanisms

Name of Section A.2: IEC 62061:2005/AMD1:2012

Section 1.3: Reference normative

Section 4.1.1: Safety analysis results customization

Section Appendix A: Change impact analysis for other safety standards

Section A.2.2: Safety metrics computation

Figure 9: SRECS high-level diagram
• Deleted:

Section A.4: IEC 60730-1:2010

08-Aug-2018 6
• Notes on multiple fault scenarios section moved from Description of

hardware and software diagnostics section to Safety results section.
• Updated Assumed safety requirements section

 UM1741

UM1741 - Rev 8 page 75/84

Date Version Changes

25-Jun-2019 7

Updated:
• Functional safety documentation framework
• Updated Reference normative section
• Updated Change impact analysis for other safety standards

Deleted:
• Section A.4 ISO 26262:2010

01-Jul-2020 8

General update.

Former appendix changed into Section 6 Change impact analysis for other
safety standards, with the removal of ISO 13849 work products, IEC 62061
work products, and IEC 61800 work products subsections.

 UM1741

UM1741 - Rev 8 page 76/84

Glossary
 Application software within the software executed by
Device, the part that ensures functionality of End user's
application and integrates safety functions

CCF common cause failure

CM continuous mode

Compliant item any item subject to claim with respect
to the clauses of IEC 61508 series of standards

COTS commercial off-the-shelf

CoU conditions of use

CPU central processing unit

CRC cyclic redundancy check

DC diagnostic coverage

Device depending on context, any single or all of the
STM32F0 Series silicon products

DMA direct memory access

DTI diagnostic test interval

ECM engine control module

ECU electronic control unit

End user individual person or company who
integrates Device in their application, such as an
electronic control board

EUC equipment under control

FIT failure in time

FMEA failure mode effect analysis

FMEDA failure mode effect diagnostic analysis

HD high-demand

HFT hardware fault tolerance

HW hardware

ITRS international technology roadmap for
semiconductors

LD low-demand

MCU microcontroller unit

MPU memory protection unit

MTBF mean time between failures

MTTFd mean time to dangerous failure

PDS(SR) safety-related power drive system

PEc programmable electronics - core

PEd programmable electronics - diagnostic

PFD probability of dangerous failure on demand

PFH probability of failure per hour

PL performance level

PST process safety time

SFF safe failure fraction

SIL safety integrity level

SILCL safety integrity level claim limit

SRCF safety-related control function

SRECS safety-related electrical control systems

SRP/CS safety-related parts of machinery control
systems

 UM1741
Glossary

UM1741 - Rev 8 page 77/84

Contents

1 About this document .2

1.1 Purpose and scope . 2

1.2 Normative references . 2

1.3 Reference documents. 3

2 Device development process .4

3 Reference safety architecture .5

3.1 Safety architecture introduction . 5

3.2 Compliant item. 5

3.2.1 Definition of Compliant item . 5

3.2.2 Safety functions performed by Compliant item . 5

3.2.3 Reference safety architectures - 1oo1. 6

3.2.4 Reference safety architectures - 1oo2. 7

3.3 Safety analysis assumptions . 8

3.3.1 Safety requirement assumptions . 8

3.4 Electrical specifications and environment limits . 9

3.5 Systematic safety integrity . 9

3.6 Hardware and software diagnostics . 9

3.6.1 Arm® Cortex®-M0 CPU . 10

3.6.2 System bus architecture . 15

3.6.3 Embedded SRAM . 16

3.6.4 Embedded Flash memory . 19

3.6.5 Power controller (PWR) . 22

3.6.6 Reset and clock controller (RCC) . 25

3.6.7 General-purpose input/output (GPIO) . 27

3.6.8 Debug system or peripheral control. 29

3.6.9 System configuration controller (SYSCFG) . 30

3.6.10 Direct memory access controller (DMA) . 31

3.6.11 Extended interrupt and events controller (EXTI) . 33

3.6.12 Cyclic redundancy-check calculation unit (CRC) . 35

3.6.13 Analog-to-digital converter (ADC) . 36

 UM1741
Contents

UM1741 - Rev 8 page 78/84

3.6.14 Digital-to-analog converter (DAC) . 38

3.6.15 Comparator (COMP) . 39

3.6.16 Touch sensing controller (TSC) . 41

3.6.17 Advanced, general, and low-power timer (TIM1/2/3/14/15/16/17) 42

3.6.18 Basic timers (TIM6/7) . 45

3.6.19 Real-time clock module (RTC) . 46

3.6.20 Inter-integrated circuit (I2C). 48

3.6.21 Universal synchronous/asynchronous and low-power universal asynchronous receiver/
transmitter (USART) . 50

3.6.22 Serial peripheral interface (SPI) . 52

3.6.23 Controller area network (CAN) . 55

3.6.24 USB on-the-go full-speed (OTG_FS) . 56

3.6.25 HDMI-CEC (CEC) . 58

3.6.26 Part separation (no interference). 59

3.7 Conditions of use. 61

4 Safety results. .66

4.1 Random hardware failure safety results . 66

4.1.1 Safety analysis result customization . 66

4.1.2 General requirements for freedom from interferences (FFI) . 67

4.1.3 Notes on multiple-fault scenario . 68

4.2 Analysis of dependent failures. 68

4.2.1 Power supply . 68

4.2.2 Clock. 68

4.2.3 DMA . 69

4.2.4 Internal temperature . 69

5 List of evidences .70

6 Change impact analysis for other safety standards. .71

6.1 ISO 13849-1:2015, ISO 13849-2:2012. 71

6.1.1 ISO 13849 architectural categories . 71

6.1.2 ISO 13849 safety metrics computation . 72

6.2 IEC 62061:2005+AMD1:2012+AMD2:2015. 73

6.2.1 IEC 62061 architectural categories . 73

 UM1741
Contents

UM1741 - Rev 8 page 79/84

6.2.2 IEC 62061 safety metrics computation . 73

6.3 IEC 61800-5-2:2016 . 74

6.3.1 IEC 61800 architectural categories . 74

6.3.2 IEC 61800 safety metrics computation . 74

Revision history .75

Glossary .77

 UM1741
Contents

UM1741 - Rev 8 page 80/84

List of tables
Table 1. Document sections versus IEC 61508-2 Annex D safety requirements . 2
Table 2. SS1 and SS2 safe state details . 9
Table 3. CPU_SM_0. 10
Table 4. CPU_SM_1. 11
Table 5. CPU_SM_2. 12
Table 6. CPU_SM_3. 12
Table 7. CPU_SM_4. 13
Table 8. CPU_SM_5. 13
Table 9. CPU_SM_6. 14
Table 10. BUS_SM_0. 15
Table 11. BUS_SM_1. 15
Table 12. RAM_SM_0 . 16
Table 13. RAM_SM_1 . 16
Table 14. RAM_SM_2 . 17
Table 15. RAM_SM_3 . 17
Table 16. RAM_SM_4 . 18
Table 17. RAM_SM_5 . 19
Table 18. FLASH_SM_0 . 19
Table 19. FLASH_SM_1 . 20
Table 20. FLASH_SM_2 . 20
Table 21. FLASH_SM_3 . 21
Table 22. FLASH_SM_4 . 21
Table 23. FLASH_SM_5 . 21
Table 24. FLASH_SM_6 . 22
Table 25. VSUP_SM_0. 22
Table 26. VSUP_SM_1. 23
Table 27. VSUP_SM_2. 23
Table 28. VSUP_SM_3. 24
Table 29. VSUP_SM_5. 25
Table 30. CLK_SM_0 . 25
Table 31. CLK_SM_1 . 26
Table 32. CLK_SM_2 . 26
Table 33. CLK_SM_3 . 26
Table 34. GPIO_SM_0 . 27
Table 35. GPIO_SM_1 . 27
Table 36. GPIO_SM_2 . 28
Table 37. GPIO_SM_3 . 28
Table 38. DBG_SM_0. 29
Table 39. LOCK_SM_0. 29
Table 40. SYSCFG_SM_0 . 30
Table 41. DIAG_SM_0 . 30
Table 42. DMA_SM_0 . 31
Table 43. DMA_SM_1 . 31
Table 44. DMA_SM_2 . 32
Table 45. DMA_SM_3 . 32
Table 46. DMA_SM_4 . 33
Table 47. NVIC_SM_0 . 33
Table 48. NVIC_SM_1 . 35
Table 49. CRC_SM_0. 35
Table 50. ADC_SM_0. 36
Table 51. ADC_SM_1. 36
Table 52. ADC_SM_2. 37

 UM1741
List of tables

UM1741 - Rev 8 page 81/84

Table 53. ADC_SM_3. 37
Table 54. DAC_SM_0. 38
Table 55. DAC_SM_1. 38
Table 56. COMP_SM_0 . 39
Table 57. COMP_SM_1 . 39
Table 58. COMP_SM_2 . 39
Table 59. COMP_SM_3 . 40
Table 60. COMP_SM_4 . 40
Table 61. TSC_SM_0 . 41
Table 62. TSC_SM_1 . 41
Table 63. TSC_SM_2 . 42
Table 64. ATIM_SM_0 . 42
Table 65. ATIM_SM_1 . 42
Table 66. ATIM_SM_2 . 43
Table 67. ATIM_SM_3 . 44
Table 68. ATIM_SM_4 . 44
Table 69. GTIM_SM_0 . 45
Table 70. GTIM_SM_1 . 45
Table 71. RTC_SM_0 . 46
Table 72. RTC_SM_1 . 46
Table 73. RTC_SM_2 . 47
Table 74. RTC_SM_3 . 47
Table 75. IIC_SM_0 . 48
Table 76. IIC_SM_1 . 48
Table 77. IIC_SM_2 . 48
Table 78. IIC_SM_3 . 49
Table 79. IIC_SM_4 . 50
Table 80. UART_SM_0. 50
Table 81. UART_SM_1. 50
Table 82. UART_SM_2. 51
Table 83. UART_SM_3. 51
Table 84. SPI_SM_0 . 52
Table 85. SPI_SM_1 . 53
Table 86. SPI_SM_2 . 53
Table 87. SPI_SM_3 . 54
Table 88. SPI_SM_4 . 54
Table 89. CAN_SM_0. 55
Table 90. CAN_SM_1. 55
Table 91. CAN_SM_2. 55
Table 92. USB_SM_0. 56
Table 93. USB_SM_1. 57
Table 94. USB_SM_2. 57
Table 95. USB_SM_3. 57
Table 96. HDMI_SM_0 . 58
Table 97. HDMI_SM_1 . 58
Table 98. HDMI_SM_2 . 59
Table 99. FFI_SM_0. 60
Table 100. FFI_SM_1. 60
Table 101. List of safety mechanisms . 61
Table 102. Overall achievable safety integrity levels . 66
Table 103. List of general requirements for FFI . 67
Table 104. ISO 13849 architectural categories. 72
Table 105. IEC 62061 architectural categories. 73
Table 106. Document revision history . 75

 UM1741
List of tables

UM1741 - Rev 8 page 82/84

List of figures
Figure 1. STMicroelectronics product development process . 4
Figure 2. STM32 as Compliant item . 5
Figure 3. 1oo1 reference architecture . 6
Figure 4. 1oo2 reference architecture . 7
Figure 5. Allocation and target for STM32 PST . 8

 UM1741
List of figures

UM1741 - Rev 8 page 83/84

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics International NV and its affiliates (“ST”) reserve the right to make changes corrections, enhancements, modifications, and improvements to
ST products and/or to this document any time without notice.

This document is provided solely for the purpose of obtaining general information relating to an ST product. Accordingly, you hereby agree to make use of this
document solely for the purpose of obtaining general information relating to the ST product. You further acknowledge and agree that this document may not be
used in or in connection with any legal or administrative proceeding in any court, arbitration, agency, commission or other tribunal or in connection with any
action, cause of action, litigation, claim, allegation, demand or dispute of any kind. You further acknowledge and agree that this document shall not be
construed as an admission, acknowledgment or evidence of any kind, including, without limitation, as to the liability, fault or responsibility whatsoever of ST or
any of its affiliates, or as to the accuracy or validity of the information contained herein, or concerning any alleged product issue, failure, or defect. ST does not
promise that this document is accurate or error free and specifically disclaims all warranties, express or implied, as to the accuracy of the information
contained herein. Accordingly, you agree that in no event will ST or its affiliates be liable to you for any direct, indirect, consequential, exemplary, incidental,
punitive, or other damages, including lost profits, arising from or relating to your reliance upon or use of this document.

Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of
sale in place at the time of order acknowledgment, including, without limitation, the warranty provisions thereunder.

In that respect please note that ST products are not designed for use in some specific applications or environments described in above mentioned terms and
conditions.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

Information furnished is believed to be accurate and reliable. However, ST assumes no responsibility for the consequences of use of such information nor for
any infringement of patents or other rights of third parties which may result from its use. No license, express or implied, to any intellectual property right is
granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics – All rights reserved

 UM1741

UM1741 - Rev 8 page 84/84

http://www.st.com/trademarks

	1 About this document
	1.1 Purpose and scope
	1.2 Normative references
	1.3 Reference documents

	2 Device development process
	3 Reference safety architecture
	3.1 Safety architecture introduction
	3.2 Compliant item
	3.2.1 Definition of Compliant item
	3.2.2 Safety functions performed by Compliant item
	3.2.3 Reference safety architectures - 1oo1
	3.2.4 Reference safety architectures - 1oo2

	3.3 Safety analysis assumptions
	3.3.1 Safety requirement assumptions

	3.4 Electrical specifications and environment limits
	3.5 Systematic safety integrity
	3.6 Hardware and software diagnostics
	3.6.1 Arm(R) Cortex(R)-M0 CPU
	3.6.2 System bus architecture
	3.6.3 Embedded SRAM
	3.6.4 Embedded Flash memory
	3.6.5 Power controller (PWR)
	3.6.6 Reset and clock controller (RCC)
	3.6.7 General-purpose input/output (GPIO)
	3.6.8 Debug system or peripheral control
	3.6.9 System configuration controller (SYSCFG)
	3.6.10 Direct memory access controller (DMA)
	3.6.11 Extended interrupt and events controller (EXTI)
	3.6.12 Cyclic redundancy-check calculation unit (CRC)
	3.6.13 Analog-to-digital converter (ADC)
	3.6.14 Digital-to-analog converter (DAC)
	3.6.15 Comparator (COMP)
	3.6.16 Touch sensing controller (TSC)
	3.6.17 Advanced, general, and low-power timer (TIM1/2/3/14/15/16/17)
	3.6.18 Basic timers (TIM6/7)
	3.6.19 Real-time clock module (RTC)
	3.6.20 Inter-integrated circuit (I2C)
	3.6.21 Universal synchronous/asynchronous and low-power universal asynchronous receiver/transmitter (USART)
	3.6.22 Serial peripheral interface (SPI)
	3.6.23 Controller area network (CAN)
	3.6.24 USB on-the-go full-speed (OTG_FS)
	3.6.25 HDMI-CEC (CEC)
	3.6.26 Part separation (no interference)

	3.7 Conditions of use

	4 Safety results
	4.1 Random hardware failure safety results
	4.1.1 Safety analysis result customization
	4.1.2 General requirements for freedom from interferences (FFI)
	4.1.3 Notes on multiple-fault scenario

	4.2 Analysis of dependent failures
	4.2.1 Power supply
	4.2.2 Clock
	4.2.3 DMA
	4.2.4 Internal temperature

	5 List of evidences
	6 Change impact analysis for other safety standards
	6.1 ISO 13849-1:2015, ISO 13849-2:2012
	6.1.1 ISO 13849 architectural categories
	6.1.2 ISO 13849 safety metrics computation

	6.2 IEC 62061:2005+AMD1:2012+AMD2:2015
	6.2.1 IEC 62061 architectural categories
	6.2.2 IEC 62061 safety metrics computation

	6.3 IEC 61800-5-2:2016
	6.3.1 IEC 61800 architectural categories
	6.3.2 IEC 61800 safety metrics computation

	Revision history
	Glossary
	Application software
	CCF
	CM
	Compliant item
	COTS
	CoU
	CPU
	CRC
	DC
	Device
	DMA
	DTI
	ECM
	ECU
	End user
	EUC
	FIT
	FMEA
	FMEDA
	HD
	HFT
	HW
	ITRS
	LD
	MCU
	MPU
	MTBF
	MTTFd
	PDS(SR)
	PEc
	PEd
	PFD
	PFH
	PL
	PST
	SFF
	SIL
	SILCL
	SRCF
	SRECS
	SRP/CS

